已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BD作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证 OE = OF (不需证明)
(2)直线BP绕点B逆时针方向旋转,当 ∠ OFE = 30 ° 时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
如图1,点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题: (1)数轴上表示1和5两点之间的距离是 ,数轴上表示2和﹣1的两点之间的距离是 ; (2)数轴上表示x和﹣1的两点之间的距离表示为 ; (3)若x表示一个有理数,化简:|x﹣2|+|x+4|; (4)利用数轴求出|x+3|+|x﹣4|的最小值,并写出此时x可取哪些整数值?
观察下列等式,,,以上三个等式两边分别相加得: (1)猜想并写出:=﹣ ; (2)计算:= ; (3)探究并计算:= ; (4)若|ab﹣3|与|b﹣1|互为相反数,求:+++…+的值.
某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元. (1)试用含a的代数式填空: ①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元; ③涨价后,商场的台灯平均每月的销售量为 台. (2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
一只蚂蚁从某点M出发,在一条直线上来回爬行,把它向右爬行的路程记为正数,向左爬行的路程记为负数,则它爬过的各段路程依次为:﹣3cm,+10cm,﹣8cm,+5cm,﹣6cm,+12cm,﹣12cm. (1)问这只蚂蚁最后停止位置在出发点M的左侧,还是右侧,距离多远? (2)蚂蚁在爬行过程中,如果每爬行2cm获得1粒芝麻,那么最后它共得到多少粒芝麻?
2015秋•成都校级月考)用⊗定义一种新运算:a⊕b=(a+b)﹣(a﹣b),比如:5⊕4=(5+4)﹣(5﹣4)=8 (1)求:2⊕(﹣3); (2)求:(3⊕4)⊕5.