阅读以下材料,并按要求完成相应的任务:
莱昂哈德欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,和分别为外接圆和内切圆的半径,和分别为其中外心和内心,则.
如图1,和分别是的外接圆和内切圆,与相切分于点,设的半径为,的半径为,外心(三角形三边垂直平分线的交点)与内心(三角形三条角平分线的交点)之间的距离,则有.
下面是该定理的证明过程(部分)
延长交于点,过点作的直径,连接,.
,(同弧所对的圆周角相等).
.,,①
如图2,在图1(隐去,的基础上作的直径,连接,,,.
是的直径,所以.
与相切于点,所以,
.
(同弧所对的圆周角相等),
,
.
②
任务:(1)观察发现:, (用含,的代数式表示);
(2)请判断和的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若的外接圆的半径为,内切圆的半径为,则的外心与内心之间的距离为 .