如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 ABCD 中, AB = AD , CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形 ABCD 的对角线 AC 、 BD 交于点 O , AC ⊥ BD .试证明: A B 2 + C D 2 = A D 2 + B C 2 ;
(3)解决问题:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE 、 BG 、 GE .已知 AC = 4 , AB = 5 ,求 GE 的长.
先化简:1-÷,再选取一个合适的a值代入计算.
如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①). (1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长; (2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答: ①tan∠PEF的值是否发生变化?请说明理由; ②直接写出从开始到停止,线段EF的中点经过的路线长.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm. (1)若花园的面积为192m2,求x的值; (2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E. (1)求证:AC平分∠DAB; (2)若∠B=60°,CD=2,求AE的长.