如图所示,在正方形 ABCD 和 ΔEFG 中, AB = EF = EG = 5 cm , FG = 8 cm ,点 B 、 C 、 F 、 G 在同一直线 l 上.当点 C 、 F 重合时, ΔEFG 以 1 cm / s 的速度沿直线 l 向左开始运动, t 秒后正方形 ABCD 与 ΔEFG 重合部分的面积为 Sc m 2 .请解答下列问题:
(1)当 t = 3 秒时,求 S 的值;
(2)当 t = 5 秒时,求 S 的值;
(3)当5秒 < t ⩽ 8 秒时,求 S 与 t 的函数关系式,并求出 S 的最大值.
先简化,再求值:,其中.
如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF. (1)若∠FGB=∠FBG,求证:BF是⊙O的切线; (2)若tan∠F=,CD=a,请用a表示⊙O的半径; (3)求证:GF2﹣GB2=DF•GF.
在信宜市某“三华李”种植基地有A、B两个品种的树苗出售,已知A种比B种每株多2元,买1株A种树苗和2株B种树苗共需20元. (1)问A、B两种树苗每株分别是多少元? (2)为扩大种植,某农户准备购买A、B两种树苗共360株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.
如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n). (1)求一次函数的表达式; (2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.