阅读下面的例题及点拨,并解决问题:
例题:如图①,在等边 ΔABC 中, M 是 BC 边上一点(不含端点 B , C ) , N 是 ΔABC 的外角 ∠ ACH 的平分线上一点,且 AM = MN .求证: ∠ AMN = 60 ° .
点拨:如图②,作 ∠ CBE = 60 ° , BE 与 NC 的延长线相交于点 E ,得等边 ΔBEC ,连接 EM .易证: ΔABM ≅ ΔEBM ( SAS ) ,可得 AM = EM , ∠ 1 = ∠ 2 ;又 AM = MN ,则 EM = MN ,可得 ∠ 3 = ∠ 4 ;由 ∠ 3 + ∠ 1 = ∠ 4 + ∠ 5 = 60 ° ,进一步可得 ∠ 1 = ∠ 2 = ∠ 5 ,又因为 ∠ 2 + ∠ 6 = 120 ° ,所以 ∠ 5 + ∠ 6 = 120 ° ,即: ∠ AMN = 60 ° .
问题:如图③,在正方形 A 1 B 1 C 1 D 1 中, M 1 是 B 1 C 1 边上一点(不含端点 B 1 , C 1 ) , N 1 是正方形 A 1 B 1 C 1 D 1 的外角 ∠ D 1 C 1 H 1 的平分线上一点,且 A 1 M 1 = M 1 N 1 .求证: ∠ A 1 M 1 N 1 = 90 ° .
(1) 计算: (2)解方程:
如图,在△ABC中,AB=AC=10cm,BD⊥AC于D,且BD=8cm.点M从点A出发,沿AC方向匀速运动,速度为2cm/s;同时直线PQ由点B出发沿BA方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于P,交BC于Q,连接PM,设运动时间为t(s)(0<t<5).(1)当四边形PQCM是平行四边形时,求t的值;(2)当t为何值时,△PQM是等腰三角形?(3)以PM为直径作⊙E,在点P、Q整个运动过程中,是否存在这样的时刻t,使得⊙E与BC相切?若存在,请求出运动时间t的值;若不存在,请说明理由.
如图①,在矩形 ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿 D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图象,求b、图②中c及d的值;(2)连接PQ,当PQ平分矩形ABCD的面积时,运动时间x的值为 ;(3)当两点改变速度后,设点P、Q在运动线路上相距的路程为y(cm),求y(cm)与运动时间x(秒)之间的函数关系式,并写出自变量x的取值范围;(4)若点P、点Q在运动路线上相距的路程为25cm,求x的值.
如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.(1)求这条抛物线的函数关系式;(2)点P为第三象限内抛物线上的一动点,连接BC、PC、PB,求△BCP面积的最大值,并求出此时点P的坐标;(3)点E为抛物线上的一点,点F为x轴上的一点,若四边形ABEF为平行四边形,请直接写出所有符合条件的点E的坐标.
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?