如图,在菱形 中, 是锐角, 是 边上的动点,将射线 绕点 按逆时针方向旋转,交直线 于点 .
(1)当 , 时,
①求证: ;
②连结 , ,若 ,求 的值;
(2)当 时,延长 交射线 于点 ,延长 交射线 于点 ,连结 , ,若 , ,则当 为何值时, 是等腰三角形.
如图,在菱形 中, ,点 , , 分别在边 , 上, , 平分 ,点 是线段 上一动点(与点 不重合).
(1)求证: ;
(2)当 , 时.
求 周长的最小值;
②若点 是 的中点,是否存在直线 将 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 .若存在,请求出 的值;若不存在,请说明理由.
如图,在菱形 中, , 交 的延长线于点 .连结 交 于点 ,交 于点 . 于点 ,连结 .有下列结论:① ;② ;③ ;④ .其中所有正确结论的序号为 .
如图,在平面直角坐标系中,菱形 的顶点 在第二象限,其余顶点都在第一象限, 轴, , .过点 作 ,垂足为 , .反比例函数 的图象经过点 ,与边 交于点 ,连接 , , .若 ,则 的值为
A. |
|
B. |
|
C. |
7 |
D. |
|
如图,在菱形 中, , ,过菱形 的对称中心 分别作边 , 的垂线,交各边于点 , , , ,则四边形 的周长为
A. |
|
B. |
|
C. |
|
D. |
|
已知:如图,在菱形 中,点 、 分别在边 、 上, , 的延长线交 的延长线于点 , 的延长线交 的延长线于点 .
[小题1]求证: ;
[小题2]如果 ,求证: .
如图, 是 的内接三角形,点 在 上,点 在弦 上 不与 重合),且四边形 为菱形.
(1)求证: ;
(2)求证: ;
(3)已知 的半径为3.
①若 ,求 的长;
②当 为何值时, 的值最大?
如图1,菱形 的对角线 与 相交于点 , 、 两点同时从 点出发,以1厘米 秒的速度在菱形的对角线及边上运动.点 的运动路线为 ,点 的运动路线为 .设运动的时间为 秒, 、 间的距离为 厘米, 与 的函数关系的图象大致如图2所示,当点 在 段上运动且 、 两点间的距离最短时, 、 两点的运动路程之和为 厘米.
如图,菱形 中, , ,延长 至 ,使 ,以 为一边,在 的延长线上作菱形 ,连接 ,得到 ;再延长 至 ,使 ,以 为一边,在 的延长线上作菱形 ,连接 ,得到△ 按此规律,得到△ ,记 的面积为 ,△ 的面积为 ,△ 的面积为 ,则 .
问题解决:如图1,在矩形 中,点 , 分别在 , 边上, , 于点 .
(1)求证:四边形 是正方形;
(2)延长 到点 ,使得 ,判断 的形状,并说明理由.
类比迁移:如图2,在菱形 中,点 , 分别在 , 边上, 与 相交于点 , , , , ,求 的长.
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
如图,在射线 , , , 围成的菱形 中, , , 是射线 上一点, 与 , 都相切,与 的延长线交于点 .过 作 交线段 (或射线 于点 ,交线段 (或射线 于点 .以 为边作矩形 ,点 , 分别在围成菱形的另外两条射线上.
(1)求证: .
(2)设 ,当矩形 的面积为 时,求 的半径.
(3)当 或 与 相切时,求出所有满足条件的 的长.
如图,菱形 的边长为1, ,点 是边 上任意一点(端点除外),线段 的垂直平分线交 , 分别于点 , , , 的中点分别为 , .
(1)求证: ;
(2)求 的最小值;
(3)当点 在 上运动时, 的大小是否变化?为什么?
如图,菱形 的四个顶点均在坐标轴上,对角线 、 交于原点 , 于 点,交 于 点,反比例函数 的图象经过线段 的中点 ,若 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|