如图,在射线 BA , BC , AD , CD 围成的菱形 ABCD 中, ∠ ABC = 60 ° , AB = 6 3 , O 是射线 BD 上一点, ⊙ O 与 BA , BC 都相切,与 BO 的延长线交于点 M .过 M 作 EF ⊥ BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G , H 分别在围成菱形的另外两条射线上.
(1)求证: BO = 2 OM .
(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 ⊙ O 的半径.
(3)当 HE 或 HG 与 ⊙ O 相切时,求出所有满足条件的 BO 的长.
如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.用含x的代数式表示AC+CE的长请问点C满足什么条件时,AC+CE的值最小?根据(2)中的规律和结论,请构图求出代数式的最小值.
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数(k>0,x>0)的图象上,点P(m、n)是函数(k>0,x>0)图象上的一个动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设两个四边形OEPF和OABC不重合部分的面积之和为S.求B点坐标和k的值当S=时,求点P的坐标
已知:如图,△OPQ是边长为2的等边三角形,反比例函数的图象过P点;求P点和Q点的坐标求反比例函数的解析式.
已知,求的值.