初中数学

如图,平面内的两条直线 l 1 l 2 ,点 A B 在直线 l 1 上,点 C D 在直线 l 2 上,过 A B 两点分别作直线 l 2 的垂线,垂足分别为 A 1 B 1 ,我们把线段 A 1 B 1 叫做线段 AB 在直线 l 2 上的正投影,其长度可记作 T ( AB , CD ) T ( AB , l 2 ) ,特别地线段 AC 在直线 l 2 上的正投影就是线段 A 1 C

请依据上述定义解决如下问题:

(1)如图1,在锐角 ΔABC 中, AB = 5 T ( AC , AB ) = 3 ,则 T ( BC , AB ) =       

(2)如图2,在 Rt Δ ABC 中, ACB = 90 ° T ( AC , AB ) = 4 T ( BC , AB ) = 9 ,求 ΔABC 的面积;

(3)如图3,在钝角 ΔABC 中, A = 60 ° ,点 D AB 边上, ACD = 90 ° T ( AD , AC ) = 2 T ( BC , AB ) = 6 ,求 T ( BC , CD )

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

中,上一点,连接

(1)如图1,若延长线上一点,垂直,求证:

(2)过点为垂足,连接并延长交于点

①如图2,若,求证:

②如图3,若的中点,直接写出的值.(用含的式子表示)

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知:在 ΔABC 中, ACB = 90 ° ,点 D AC 边上一点,连接 BD ,点 E 是线段 BD 延长线上一点,连接 AE CE ,使 CAE = CBE ,过点 C CF CE ,交 BD 于点 F

(1)①如图1,当 ABC = 45 ° 时,线段 AE BF 之间的数量关系是 

②如图2,当 ABC = 60 ° 时,线段 AE BF 之间的数量关系是  

(2)如图3,当 ABC = 30 ° 时,线段 AE BF 之间具有怎样的数量关系?请说明理由.

(3)如图4,当 ABC = α ( 0 ° < α < 90 ° ) 时,直接写出线段 AE BF 之间的数量关系.(用含 α 的式子表示)

来源:2018年辽宁省营口市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

已知 ΔABC 是等腰直角三角形, BAC = 90 ° CD = 1 2 BC DE CE DE = CE ,连接 AE ,点 M AE 的中点.

(1)如图1,若点 D BC 边上,连接 CM ,当 AB = 4 时,求 CM 的长;

(2)如图2,若点 D ΔABC 的内部,连接 BD ,点 N BD 中点,连接 MN NE ,求证: MN AE

(3)如图3,将图2中的 ΔCDE 绕点 C 逆时针旋转,使 BCD = 30 ° ,连接 BD ,点 N BD 中点,连接 MN ,探索 MN AC 的值并直接写出结果.

来源:2016年重庆市中考数学试卷(b卷)
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

(1)问题发现

如图1,在中,,连接交于点.填空:

的值为  

的度数为  

(2)类比探究

如图2,在中,,连接的延长线于点.请判断的值及的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将绕点在平面内旋转,所在直线交于点,若,请直接写出当点与点重合时的长.

来源:2018年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

探究

(1)如图①,在等腰直角三角形中,,作平分于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接

填空:

①线段的数量关系为  

②线段的位置关系为  

推广:

(2)如图②,在等腰三角形中,顶角,作平分于点,点外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接请判断(1)中的结论是否成立,并说明理由.

应用:

(3)如图③,在等边三角形中,.作平分于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接.当以为顶点的三角形与全等时,请直接写出的值.

来源:2018年河南省中考数学试卷(备用卷)
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ BCD 中, CBD = 90 ° BC = BD ,点 A CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF EA ,交 CD 所在直线于点 F

(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC DE = 2 2 DF

(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC DE DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图 ΔABC 为等边三角形,以 BC 为边在 ΔABC 外作正方形 BCDE ,延长 AB 分别交 CE DE 的延长线于点 F N CH AF 于点 H EM AF 于点 M ,连接 AE

(1)判断 ΔCHB ΔBME 是否全等,并说明理由;

(2)求证: A E 2 = AC · AF

(3)已知 AB = 2 ,若点 P 是直线 AF 上的动点,请直接写出 ΔCEP 周长的最小值.

来源:2018年辽宁省丹东市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔADE 中, CAB = DAE = 36 ° AB = AC AD = AE .连接 CD ,连接 BE 并延长交 AC AD 于点 F G .若 BE 恰好平分 ABC ,则下列结论错误的是 (    )

A.

ADC = AEB

B.

CD / / AB

C.

DE = GE

D.

B F 2 = CF AC

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 7 . 5 AC = 9 S ΔABC = 81 4 .动点 P A 点出发,沿 AB 方向以每秒5个单位长度的速度向 B 点匀速运动,动点 Q C 点同时出发,以相同的速度沿 CA 方向向 A 点匀速运动,当点 P 运动到 B 点时, P Q 两点同时停止运动,以 PQ 为边作正 ΔPQM ( P Q M 按逆时针排序),以 QC 为边在 AC 上方作正 ΔQCN ,设点 P 运动时间为 t 秒.

(1)求 cos A 的值;

(2)当 ΔPQM ΔQCN 的面积满足 S ΔPQM = 9 5 S ΔQCN 时,求 t 的值;

(3)当 t 为何值时, ΔPQM 的某个顶点 ( Q 点除外)落在 ΔQCN 的边上.

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知:在四边形 ABCD 中,对角线 AC BD 相交于点 E ,且 AC BD ,作 BF CD ,垂足为点 F BF AC 交于点 G BGE = ADE

(1)如图1,求证: AD = CD

(2)如图2, BH ΔABE 的中线,若 AE = 2 DE DE = EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 ΔADE 面积的2倍.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

来源:2018年辽宁省大连市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

初中数学三角形综合题试题