初中数学

我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 ΔABC 中, AO BC 边上的中线, AB AC 的“极化值”就等于 A O 2 - B O 2 的值,可记为 AB AC = A O 2 - B O 2

(1)在图1中,若 BAC = 90 ° AB = 8 AC = 6 AO BC 边上的中线,则 AB AC =          OC OA =        

(2)如图2,在 ΔABC 中, AB = AC = 4 BAC = 120 ° ,求 AB AC BA BC 的值;

(3)如图3,在 ΔABC 中, AB = AC AO BC 边上的中线,点 N AO 上,且 ON = 1 3 AO .已知 AB AC = 14 BN BA = 10 ,求 ΔABC 的面积.

来源:2017年江苏省扬州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(1)操作发现:如图①,小明画了一个等腰三角形 ABC ,其中 AB = AC ,在 ΔABC 的外侧分别以 AB AC 为腰作了两个等腰直角三角形 ABD ACE ,分别取 BD CE BC 的中点 M N G ,连接 GM GN .小明发现了:线段 GM GN 的数量关系是  ;位置关系是  

(2)类比思考:

如图②,小明在此基础上进行了深入思考.把等腰三角形 ABC 换为一般的锐角三角形,其中 AB > AC ,其它条件不变,小明发现的上述结论还成立吗?请说明理由.

(3)深入研究:

如图③,小明在(2)的基础上,又作了进一步的探究.向 ΔABC 的内侧分别作等腰直角三角形 ABD ACE ,其它条件不变,试判断 ΔGMN 的形状,并给与证明.

来源:2018年山东省淄博市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° D BC 边上一点,连接 AD ,分别以 CD AD 为直角边作 Rt Δ CDE Rt Δ ADF ,使 DCE = ADF = 90 ° ,点 E F BC 下方,连接 EF

(1)如图1,当 BC = AC CE = CD DF = AD 时,

求证:① CAD = CDF ,② BD = EF

(2)如图2,当 BC = 2 AC CE = 2 CD DF = 2 AD 时,猜想 BD EF 之间的数量关系?并说明理由.

来源:2019年辽宁省锦州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,是具有公共边 AB 的两个直角三角形,其中, AC = BC ACB = ADB = 90 °

(1)如图1,若延长 DA 到点 E ,使 AE = BD ,连接 CD CE

①求证: CD = CE CD CE

②求证: AD + BD = 2 CD

(2)若 ΔABC ΔABD 位置如图2所示,请直接写出线段 AD BD CD 的数量关系.

来源:2019年辽宁省阜新市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,平面内的两条直线 l 1 l 2 ,点 A B 在直线 l 1 上,点 C D 在直线 l 2 上,过 A B 两点分别作直线 l 2 的垂线,垂足分别为 A 1 B 1 ,我们把线段 A 1 B 1 叫做线段 AB 在直线 l 2 上的正投影,其长度可记作 T ( AB , CD ) T ( AB , l 2 ) ,特别地线段 AC 在直线 l 2 上的正投影就是线段 A 1 C

请依据上述定义解决如下问题:

(1)如图1,在锐角 ΔABC 中, AB = 5 T ( AC , AB ) = 3 ,则 T ( BC , AB ) =       

(2)如图2,在 Rt Δ ABC 中, ACB = 90 ° T ( AC , AB ) = 4 T ( BC , AB ) = 9 ,求 ΔABC 的面积;

(3)如图3,在钝角 ΔABC 中, A = 60 ° ,点 D AB 边上, ACD = 90 ° T ( AD , AC ) = 2 T ( BC , AB ) = 6 ,求 T ( BC , CD )

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知:在 ΔABC 中, ACB = 90 ° ,点 D AC 边上一点,连接 BD ,点 E 是线段 BD 延长线上一点,连接 AE CE ,使 CAE = CBE ,过点 C CF CE ,交 BD 于点 F

(1)①如图1,当 ABC = 45 ° 时,线段 AE BF 之间的数量关系是 

②如图2,当 ABC = 60 ° 时,线段 AE BF 之间的数量关系是  

(2)如图3,当 ABC = 30 ° 时,线段 AE BF 之间具有怎样的数量关系?请说明理由.

(3)如图4,当 ABC = α ( 0 ° < α < 90 ° ) 时,直接写出线段 AE BF 之间的数量关系.(用含 α 的式子表示)

来源:2018年辽宁省营口市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ BCD 中, CBD = 90 ° BC = BD ,点 A CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF EA ,交 CD 所在直线于点 F

(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC DE = 2 2 DF

(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC DE DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔADE 中, CAB = DAE = 36 ° AB = AC AD = AE .连接 CD ,连接 BE 并延长交 AC AD 于点 F G .若 BE 恰好平分 ABC ,则下列结论错误的是 (    )

A.

ADC = AEB

B.

CD / / AB

C.

DE = GE

D.

B F 2 = CF AC

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 7 . 5 AC = 9 S ΔABC = 81 4 .动点 P A 点出发,沿 AB 方向以每秒5个单位长度的速度向 B 点匀速运动,动点 Q C 点同时出发,以相同的速度沿 CA 方向向 A 点匀速运动,当点 P 运动到 B 点时, P Q 两点同时停止运动,以 PQ 为边作正 ΔPQM ( P Q M 按逆时针排序),以 QC 为边在 AC 上方作正 ΔQCN ,设点 P 运动时间为 t 秒.

(1)求 cos A 的值;

(2)当 ΔPQM ΔQCN 的面积满足 S ΔPQM = 9 5 S ΔQCN 时,求 t 的值;

(3)当 t 为何值时, ΔPQM 的某个顶点 ( Q 点除外)落在 ΔQCN 的边上.

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知:在四边形 ABCD 中,对角线 AC BD 相交于点 E ,且 AC BD ,作 BF CD ,垂足为点 F BF AC 交于点 G BGE = ADE

(1)如图1,求证: AD = CD

(2)如图2, BH ΔABE 的中线,若 AE = 2 DE DE = EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 ΔADE 面积的2倍.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图 ΔABC 为等边三角形,以 BC 为边在 ΔABC 外作正方形 BCDE ,延长 AB 分别交 CE DE 的延长线于点 F N CH AF 于点 H EM AF 于点 M ,连接 AE

(1)判断 ΔCHB ΔBME 是否全等,并说明理由;

(2)求证: A E 2 = AC · AF

(3)已知 AB = 2 ,若点 P 是直线 AF 上的动点,请直接写出 ΔCEP 周长的最小值.

来源:2018年辽宁省丹东市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

初中数学三角形综合题试题