我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 中, 是 边上的中线, 与 的“极化值”就等于 的值,可记为 △ .
(1)在图1中,若 , , , 是 边上的中线,则 △ , △ ;
(2)如图2,在 中, , ,求 △ 、 △ 的值;
(3)如图3,在 中, , 是 边上的中线,点 在 上,且 .已知 △ , △ ,求 的面积.
(1)操作发现:如图①,小明画了一个等腰三角形 ,其中 ,在 的外侧分别以 , 为腰作了两个等腰直角三角形 , ,分别取 , , 的中点 , , ,连接 , .小明发现了:线段 与 的数量关系是 ;位置关系是 .
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形 换为一般的锐角三角形,其中 ,其它条件不变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向 的内侧分别作等腰直角三角形 , ,其它条件不变,试判断 的形状,并给与证明.
已知,在 中, , 是 边上一点,连接 ,分别以 和 为直角边作 和 ,使 ,点 , 在 下方,连接 .
(1)如图1,当 , , 时,
求证:① ,② ;
(2)如图2,当 , , 时,猜想 和 之间的数量关系?并说明理由.
如图,在 中, , , .
(1)求 边上的高线长.
(2)点 为线段 的中点,点 在边 上,连结 ,沿 将 折叠得到 .
①如图2,当点 落在 上时,求 的度数.
②如图3,连结 ,当 时,求 的长.
如图,是具有公共边 的两个直角三角形,其中, , .
(1)如图1,若延长 到点 ,使 ,连接 , .
①求证: , ;
②求证: ;
(2)若 与 位置如图2所示,请直接写出线段 , , 的数量关系.
如图,平面内的两条直线 、 ,点 , 在直线 上,点 、 在直线 上,过 、 两点分别作直线 的垂线,垂足分别为 , ,我们把线段 叫做线段 在直线 上的正投影,其长度可记作 或 ,特别地线段 在直线 上的正投影就是线段 .
请依据上述定义解决如下问题:
(1)如图1,在锐角 中, , ,则 ;
(2)如图2,在 中, , , ,求 的面积;
(3)如图3,在钝角 中, ,点 在 边上, , , ,求 ,
已知:在 中, ,点 是 边上一点,连接 ,点 是线段 延长线上一点,连接 , ,使 ,过点 作 ,交 于点 .
(1)①如图1,当 时,线段 与 之间的数量关系是 .
②如图2,当 时,线段 与 之间的数量关系是 .
(2)如图3,当 时,线段 与 之间具有怎样的数量关系?请说明理由.
(3)如图4,当 时,直接写出线段 与 之间的数量关系.(用含 的式子表示)
如图,在 中, , ,点 , 分别在 , 上,且 .
(1)如图1,求证: ;
(2)如图2, 是 的中点,求证: ;
(3)如图3, , 分别是 , 的中点,若 , ,求 的面积.
在 中, ,点 是 的中点,点 是 上的一个动点(点 不与点 , , 重合).过点 ,点 作直线 的垂线,垂足分别为点 和点 ,连接 , .
(1)如图1,请直接写出线段 与 的数量关系;
(2)如图2,当 时,请判断线段 与 之间的数量关系和位置关系,并说明理由
(3)若 , ,当 为等腰三角形时,请直接写出线段 的长.
如图,在 中, , ,点 在 的延长线上,且 ,点 在直线 上移动,过点 作射线 ,交 所在直线于点 .
(1)当点 在线段 上移动时,如图(1)所示,求证: .
(2)当点 在直线 上移动时,如图(2)、图(3)所示,线段 、 与 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,在 和 中, , , .连接 ,连接 并延长交 , 于点 , .若 恰好平分 ,则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
在 中, , 交 的延长线于点 .
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 ,一条直角边与 重合,另一条直角边恰好经过点 .通过观察、测量 与 的长度,得到 .请给予证明.
猜想论证:
(2)当三角尺沿 方向移动到图2所示的位置时,一条直角边仍与 边重合,另一条直角边交 于点 ,过点 作 垂足为 .此时请你通过观察、测量 、 与 的长度,猜想并写出 、 与 之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿 方向继续移动到图3所示的位置(点 在线段 上,且点 与点 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
如图,在 中, , , .动点 从 点出发,沿 方向以每秒5个单位长度的速度向 点匀速运动,动点 从 点同时出发,以相同的速度沿 方向向 点匀速运动,当点 运动到 点时, 、 两点同时停止运动,以 为边作正 、 、 按逆时针排序),以 为边在 上方作正 ,设点 运动时间为 秒.
(1)求 的值;
(2)当 与 的面积满足 时,求 的值;
(3)当 为何值时, 的某个顶点 点除外)落在 的边上.
已知:在四边形 中,对角线 、 相交于点 ,且 ,作 ,垂足为点 , 与 交于点 , .
(1)如图1,求证: ;
(2)如图2, 是 的中线,若 , ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 面积的2倍.