初中数学

已知:△ ABC内接于⊙ OD BC ̂ 上一点, OD BC ,垂足为 H

(1)如图1,当圆心 OAB边上时,求证: AC 2 OH

(2)如图2,当圆心 O在△ ABC外部时,连接 ADCDADBC交于点 P,求证: ACD APB

(3)在(2)的条件下,如图3,连接 BDE为⊙ O上一点,连接 DEBC于点 Q、交 AB于点 N,连接 OEBF为⊙ O的弦, BF OE 于点 RDE于点 G,若 ACD ABD 2 BDN AC = 5 5 BN = 3 5 , tan ABC = 1 2 ,求 BF的长.

来源:2016年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,的直径,延长线上一点,的切线,为切点,于点,交于点

(1)求证:

(2)若,求的长.

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图1,在中,,点分别在边上,,连接,点分别为的中点.

(1)观察猜想:图1中,线段的数量关系是  ,位置关系是  

(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,判断的形状,并说明理由;

(3)拓展延伸:把绕点在平面内自由旋转,若,请直接写出面积的最大值.

来源:2017年河南省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

已知:如图,点 A F E C 在同一直线上, AB / / DC AB = CD B = D

(1)求证: ΔABE ΔCDF

(2)若点 E G 分别为线段 FC FD 的中点,连接 EG ,且 EG = 5 ,求 AB 的长.

来源:2018年湖南省怀化市中考数学试卷
  • 更新:2021-05-08
  • 题型:未知
  • 难度:未知

教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.

例2 如图,在中,分别是边的中点,相交于点,求证:

证明:连结

请根据教材提示,结合图①,写出完整的证明过程.

结论应用:在中,对角线交于点为边的中点,交于点

(1)如图②,若为正方形,且,则的长为  

(2)如图③,连结于点,若四边形的面积为,则的面积为  

来源:2019年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.

已知:直线及直线外一点

求作:直线,使得

作法:如图,

①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点

②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点

③作直线.所以直线就是所求作的直线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:    

  (填推理的依据).

来源:2018年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC = 5 BC = 6 ,以 AB 为直径作 O 分别交于 AC BC 于点 D E ,过点 E O 的切线 EF AC 于点 F ,连接 BD

(1)求证: EF ΔCDB 的中位线;

(2)求 EF 的长.

来源:2019年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

中,的中点.为直线上一动点,连接.过点,交直线于点,连接

(1)如图1,当是线段的中点时,设,求的长(用含的式子表示);

(2)当点在线段的延长线上时,依题意补全图2,用等式表示线段之间的数量关系,并证明.

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径作圆 O ,分别交 BC 于点 D ,交 CA 的延长线于点 E ,过点 D DH AC 于点 H ,连接 DE 交线段 OA 于点 F

(1)求证: DH 是圆 O 的切线;

(2)若 A EH 的中点,求 EF FD 的值;

(3)若 EA = EF = 1 ,求圆 O 的半径.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

(年江西省南昌市)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a=       ,b=      
如图2,当∠ABE=30°,c=4时,a=       ,b=      
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
拓展应用
(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图, A B O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC

(1)求证: AC O 的切线;

(2)点 D E 分别是 AC OA 的中点, DE 所在直线交 O 于点 F G OA = 4 ,求 GF 的长.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC 边上的中线,以 AB 为直径的 O BC 于点 D ,过 D MN AC 于点 M ,交 AB 的延长线于点 N ,过点 B BG MN G

(1)求证: ΔBGD ΔDMA

(2)求证:直线 MN O 的切线.

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在△ ABC中, BDCE分别是 ACAB上的中线, BDCE相交于点 O

(1)利用尺规作图取线段 CO的中点.(保留作图痕迹,不写作法);

(2)猜想 COOE的长度有什么关系,并说明理由.

来源:2019年内蒙古兴安盟中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

在△ABC中,P为边AB上一点.

(1)如图1,若 ACP B ,求证: A C 2 AP AB

(2)若MCP的中点, AC 2

①如图2,若 PBM ACP AB 3 ,求BP的长;

②如图3,若 ABC 45 ° A BMP 60 ° ,直接写出BP的长.

来源:2016年湖北省武汉市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

初中数学三角形中位线定理解答题