初中数学

如图, BD ΔABC 外接圆 O 的直径,且 BAE = C

(1)求证: AE O 相切于点 A

(2)若 AE / / BC BC = 2 7 AC = 2 2 ,求 AD 的长.

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AD = 12 AB = 8 E AB 上一点,且 EB = 3 F BC 上一动点,若将 ΔEBF 沿 EF 对折后,点 B 落在点 P 处,则点 P 到点 D 的最短距离为  

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ ABC的三个顶点均在格点上,以点 A为圆心的 BC相切于点 D,分别交 ABAC于点 EF

(1)求△ ABC三边的长;

(2)求图中由线段 EBBCCF 所围成的阴影部分的面积.

来源:2019年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,过 AC 延长线上的点 O OD AO ,交 BC 的延长线于点 D ,以 O 为圆心, OD 长为半径的圆过点 B

(1)求证:直线 AB O 相切;

(2)若 AB = 5 O 的半径为12,则 tan BDO =       

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B = C = 90 ° AB = 3 BC = 4 CD = 1 .以 AD 为腰作等腰 ΔADE ,使 ADE = 90 ° ,过点 E EF DC 交直线 CD 于点 F .请画出图形,并直接写出 AF 的长.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, O 的直径为 AB ,点 C O 上,点 D E 分别在 AB AC 的延长线上, DE AE ,垂足为 E A = CDE

(1)求证: CD O 的切线;

(2)若 AB = 4 BD = 3 ,求 CD 的长.

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D O 的切线 DE ,交 AC 于点 E AC 的反向延长线交 O 于点 F

(1)求证: DE AC

(2)若 DE + EA = 8 O 的半径为10,求 AF 的长度.

来源:2017年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 °

(1)尺规作图:作 Rt Δ ABC 的外接圆 O ;作 ACB 的角平分线交 O 于点 D ,连接 AD .(不写作法,保留作图痕迹)

(2)若 AC = 6 BC = 8 ,求 AD 的长.

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC 为钝角, B = 45 ° ,点 P 是边 BC 延长线上一点,以点 C 为顶点, CP 为边,在射线 BP 下方作 PCF = B

(1)在射线 CF 上取点 E ,连接 AE 交线段 BC 于点 D

①如图1,若 AD = DE ,请直接写出线段 A CE 的数量关系和位置关系;

②如图2,若 AD = 2 DE ,判断线段 AB CE 的数量关系和位置关系,并说明理由;

(2)如图3,反向延长射线 CF ,交射线 BA 于点 C ' ,将 PCF 沿 CC ' 方向平移,使顶点 C 落在点 C ' 处,记平移后的 PCF P ' C ' F ' ,将 P ' C ' F ' 绕点 C ' 顺时针旋转角 α ( 0 ° < α < 45 ° ) C ' F ' 交线段 BC 于点 M C ' P ' 交射线 BP 于点 N ,请直接写出线段 BM MN CN 之间的数量关系.

来源:2017年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为4的正方形,点 E 在边 AD 所在直线上,连接 CE ,以 CE 为边,作正方形 CEFG (点 D ,点 F 在直线 CE 的同侧),连接 BF

(1)如图1,当点 E 与点 A 重合时,请直接写出 BF 的长;

(2)如图2,当点 E 在线段 AD 上时, AE = 1

①求点 F AD 的距离;

②求 BF 的长;

(3)若 BF = 3 10 ,请直接写出此时 AE 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题