如图,在 中, ,以点 为圆心, 长为半径画弧,交线段 于点 ;以点 为圆心, 长为半径画弧,交线段 于点 ,连接 .
(1)若 ,求 的度数.
(2)设 , .
①线段 的长是方程 的一个根吗?说明理由.
②若 ,求 的值.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形 的四边 、 、 、 分别延长至 、 、 、 ,使得 , ,连接 , , , .
(1)求证:四边形 为平行四边形;
(2)若矩形 是边长为1的正方形,且 , ,求 的长.
如图, , 是 上两点,且 ,连接 并延长到点 ,使 ,连接 .
(1)求证: 是 的切线;
(2)点 , 分别是 , 的中点, 所在直线交 于点 , , ,求 的长.
如图, 为 的直径,弦 ,垂足为点 ,直线 与 的延长线交于点 ,且 .
(1)求证:直线 是 的切线.
(2)若 , ,求线段 的长.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
如图,在 中, , , .动点 从 点出发,沿 方向以每秒5个单位长度的速度向 点匀速运动,动点 从 点同时出发,以相同的速度沿 方向向 点匀速运动,当点 运动到 点时, 、 两点同时停止运动,以 为边作正 、 、 按逆时针排序),以 为边在 上方作正 ,设点 运动时间为 秒.
(1)求 的值;
(2)当 与 的面积满足 时,求 的值;
(3)当 为何值时, 的某个顶点 点除外)落在 的边上.
如图,在 中,以 为直径的 交 于点 ,弦 交 于点 ,且 , , .
(1)求证: 是 的切线;
(2)求 的直径 的长度.
如图,点 、 分别是矩形 的边 、 上一点,若 ,且 .
(1)求证:点 为 的中点;
(2)延长 与 的延长线相交于点 ,连接 ,已知 ,求 的值.
如图所示, 是 的直径, 和 分别切 于 , 两点, 与 有公共点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
如图, 是 的直径, 和 是它的两条切线,过 上一点 作直线 ,分别交 、 于点 、 ,且 .
(1)求证:直线 是 的切线;
(2)求证: .
如图,在 中, .
(1)尺规作图:作 的外接圆 ;作 的角平分线交 于点 ,连接 .(不写作法,保留作图痕迹)
(2)若 , ,求 的长.