如图,在 的纸片中, , , .点 在边 上,以 为折痕将 折叠得到 , 与边 交于点 .若 为直角三角形,则 的长是 .
如图,把三角形纸片折叠,使点 、点 都与点 重合,折痕分别为 , ,得到 , ,若 ,则 的长为 .
如图,在 中, ,点 , 分别为 , 的中点,连接 ,作 与 相切于点 ,在 边上取一点 ,使 ,连接 .
(1)判断直线 与 的位置关系,并说明理由;
(2)当 , 时,求 的半径.
如图1, 是边长为 的等边三角形,边 在射线 上,且 ,点 从 点出发,沿 的方向以 的速度运动,当 不与点 重合时,将 绕点 逆时针方向旋转 得到 ,连接 .
(1)求证: 是等边三角形;
(2)如图2,当 时, 的周长是否存在最小值?若存在,求出 的最小周长;若不存在,请说明理由;
(3)如图3,当点 在射线 上运动时,是否存在以 、 、 为顶点的三角形是直角三角形?若存在,求出此时 的值;若不存在,请说明理由.
如图,已知 中 , , , 是线段 上的一动点,过 作 交 于 ,并使得 ,则 长度的取值范围是 .
如图,在 中, 于 , , , , 分别是 , 的中点.
(1)求证: , ;
(2)连接 ,若 ,求 的长.
如图, 中, , . 是底边 上的一个动点 与 、 不重合),以 为圆心, 为半径的 与射线 交于点 ,射线 交射线 于点 .
(1)若点 在线段 的延长线上,设 , ,求 关于 的函数关系式,并写出 的取值范围.
(2)当 时,试说明射线 与 是否相切.
(3)连接 ,若 ,求 的长.
如图, 中, , . 是底边 上的一个动点 与 、 不重合),以 为圆心, 为半径的 与射线 交于点 ,射线 交射线 于点 .
(1)若点 在线段 的延长线上,设 , ,求 关于 的函数关系式,并写出 的取值范围.
(2)当 时,试说明射线 与 是否相切.
(3)连接 ,若 ,求 的长.
如图,点 正方形 外一点,点 是线段 上一点, 是等腰直角三角形,其中 ,连接 、 .
(1)求证: ;
(2)判断 的形状,并说明理由.