如图,在 中, , , 垂直平分 ,垂足为 ,交 于点 .按以下步骤作图:①以点 为圆心,以适当的长为半径作弧,分别交边 , 于点 , ;②分别以点 , 为圆心,以大于 的长为半径作弧,两弧相交于点 ;③作射线 .若 与 的夹角为 ,则 .
已知 的半径为 , 的半径为 .以 为圆心,以 的长为半径画弧,再以线段 的中点 为圆心,以 的长为半径画弧,两弧交于点 ,连接 , , 交 于点 ,过点 作 的平行线 交 于点 .
(1)求证: 是 的切线;
(2)若 , , ,求阴影部分的面积.
如图,在 中, , ,将 绕点 旋转得到 △ ,使点 的对应点 落在 上,在 上取点 ,使 ,那么点 到 的距离等于
A. B. C. D.
如图,在 中, , , 的半径为1,点 是 边上的动点,过点 作 的一条切线 (其中点 为切点),则线段 长度的最小值为 .
如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 与正方形 .连结 , 相交于点 、 与 相交于点 .若 ,则 的值是
A. B. C. D.
如图,已知 是 的直径,半径 ,点 在劣弧 上(不与点 ,点 重合), 与 交于点 .设 , ,则
A. B. C. D.
在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 沿过点 的直线折叠,使得点 落在 上的点 处.折痕为 ;再将 , 分别沿 , 折叠,此时点 , 落在 上的同一点 处.请完成下列探究:
(1) 的大小为 ;
(2)当四边形 是平行四边形时, 的值为 .
在 中,弦 与直径 相交于点 , .
(Ⅰ)如图①,若 ,求 和 的大小;
(Ⅱ)如图②,若 ,过点 作 的切线,与 的延长线相交于点 ,求 的大小.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
阅读与思考
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
年 月 日星期日 没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 ,现根据木板的情况,要过 上的一点 ,作出 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢? 办法一:如图①,可利用一把有刻度的直尺在 上量出 ,然后分别以 , 为圆心,以 与 为半径画圆弧,两弧相交于点 ,作直线 ,则 必为 . 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 , 两点,然后把木棒斜放在木板上,使点 与点 重合,用铅笔在木板上将点 对应的位置标记为点 ,保持点 不动,将木棒绕点 旋转,使点 落在 上,在木板上将点 对应的位置标记为点 .然后将 延长,在延长线上截取线段 ,得到点 ,作直线 ,则 . 我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? |
任务:
(1)填空:“办法一”依据的一个数学定理是 ;
(2)根据“办法二”的操作过程,证明 ;
(3)①尺规作图:请在图③的木板上,过点 作出 的垂线(在木板上保留作图痕迹,不写作法);
②说明你的作法所依据的数学定理或基本事实(写出一个即可).
某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 , , 之间的关系问题”进行了以下探究:
类比探究
(1)如图2,在 中, 为斜边,分别以 , , 为斜边向外侧作 , , ,若 ,则面积 , , 之间的关系式为 ;
推广验证
(2)如图3,在 中, 为斜边,分别以 , , 为边向外侧作任意 , , ,满足 , ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;
拓展应用
(3)如图4,在五边形 中, , , , ,点 在 上, , ,求五边形 的面积.
问题呈现
如图1,在边长为1的正方形网格中,连接格点 , 和 , , 和 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 , ,可得 ,则 ,连接 ,那么 就变换到 中.
问题解决
(1)直接写出图1中 的值为 2 ;
(2)如图2,在边长为1的正方形网格中, 与 相交于点 ,求 的值;
思维拓展
(3)如图3, , ,点 在 上,且 ,延长 到 ,使 ,连接 交 的延长线于点 ,用上述方法构造网格求 的度数.