(1)如图1,在中,,以点为中心,把逆时针旋转,得到△;再以点为中心,把顺时针旋转,得到△,连接,则与的位置关系为 ;
(2)如图2,当是锐角三角形,时,将按照(1)中的方式旋转,连接,探究与的位置关系,写出你的探究结论,并加以证明;
(3)如图3,在图2的基础上,连接,若,△的面积为4,则△的面积为 .
如图,在 中, ,将 绕点 按逆时针方向旋转 得到 △ ,点 在边 上,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知 ,一条光线从点 出发后射向 边.若光线与 边垂直,则光线沿原路返回到点 ,此时 .
当 时,光线射到 边上的点 后,经 反射到线段 上的点 ,易知 .若 ,光线又会沿 原路返回到点 ,此时 .
若光线从 点出发后,经若干次反射能沿原路返回到点 ,则锐角 的最小值 .
已知正方形,点为边的中点.
(1)如图1,点为线段上的一点,且,延长、分别与边、交于点、.
①求证:;
②求证:.
(2)如图2,在边上取一点,满足,连接交于点,连接并延长交于点,求的值.
在中,,,是的中点.为直线上一动点,连接.过点作,交直线于点,连接.
(1)如图1,当是线段的中点时,设,,求的长(用含,的式子表示);
(2)当点在线段的延长线上时,依题意补全图2,用等式表示线段,,之间的数量关系,并证明.
下列条件中,不能判断△ABC为直角三角形的是( )
A.a2=1,b2=2,c2=3 |
B.a:b:c=3:4:5 |
C.∠A+∠B=∠C |
D.∠A:∠B:∠C=3:4:5 |
(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D
以AB上一点O为圆心作⊙O,使⊙O经过点A和点D。
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°,
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧所围成的阴影部分的面积(结果保留根号和)。
我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.