(1)如图1,在RtΔABC中,∠ABC=90°,以点B为中心,把ΔABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把ΔABC顺时针旋转90°,得到△A2B1C,连接C1B1,则C1B1与BC的位置关系为 ;
(2)如图2,当ΔABC是锐角三角形,∠ABC=α(α≠60°)时,将ΔABC按照(1)中的方式旋转α,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;
(3)如图3,在图2的基础上,连接B1B,若C1B1=23BC,△C1BB1的面积为4,则△B1BC的面积为 .
已知⊙的半径为1,以为原点,建立如图所示的直角坐标系.有一个正方形,顶点的坐标为(,0),顶点在轴上方,顶点在⊙上运动. (1)当点运动到与点、在一条直线上时,与⊙相切吗?如果相切,请说明理由,并求出所在直线对应的函数表达式;如果不相切,也请说明理由; (2)设点的横坐标为,正方形的面积为,求出与的函数关系式,并求出的最大值和最小值.
有一个,,,,将它放在直角坐标系中,使斜边在轴上,直角顶点在反比例函数的图象上,求点的坐标.
七(2)班共有50名学生,老师安排每人制作一件型或型的陶艺品,学校现有甲种制作材料36,乙种制作材料29,制作、两种型号的陶艺品用料情况如下表:
(1)设制作型陶艺品件,求的取值范围; (2)请你根据学校现有材料,分别写出七(2)班制作型和型陶艺品的件数.
如图,有一木制圆形脸谱工艺品,、两点为脸谱的耳朵,打算在工艺品反面两耳连线中点处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点的位置(画出图形表示),并且分别说明理由. 理由是:
如图,在中,,,. (1)在方格纸①中,画,使∽,且相似比为2︰1; (2)若将(1)中称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点为对称中心,并且以直线为对称轴的图案.