如图,线段经过的圆心,交于、两点,,为的弦,连结,,连结并延长交于点,连结交于点.
(1)求证:直线是的切线;
(2)求的半径的长;
(3)求线段的长.
已知抛物线 与 轴交于点 ,与直线 为任意实数)相交于 , 两点,则下列结论不正确的是
A. |
存在实数 ,使得 为等腰三角形 |
B. |
存在实数 ,使得 的内角中有两角分别为 和 |
C. |
任意实数 ,使得 都为直角三角形 |
D. |
存在实数 ,使得 为等边三角形 |
如图,矩形硬纸片的顶点在轴的正半轴及原点上滑动,顶点在轴的正半轴及原点上滑动,点为的中点,,.给出下列结论:①点从点出发,到点运动至点为止,点经过的路径长为;②的面积最大值为144;③当最大时,点的坐标为,.其中正确的结论是 .(填写序号)
如图,点是以为直径的上一点,过点作的切线,交的延长线于点,是的中点,连接并延长与的延长线交于点.
(1)求证:是的切线;
(2)若,,求的长.
如图,在 中, , , ,以 为直径的半圆 交斜边 于点 ,则图中阴影部分的面积为
A. |
|
B. |
|
C. |
|
D. |
|
如图,中,,为延长线上一点,,过点作于点,交于点,连接,.
(1)求证:;
(2)求的度数;
(3)当时,求的值.
如图,中,,为延长线上一点,,过点作于点,交于点,连接,.
(1)求证:;
(2)求的度数;
(3)当时,求的值.
如图,在直角坐标系中,已知点,等边三角形的顶点在反比例函数的图象上.
(1)求反比例函数的表达式.
(2)把向右平移个单位长度,对应得到△当这个函数图象经过△一边的中点时,求的值.
如图, 是 的直径, 是 的切线, 为切点,若 ,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|