初中数学

如图, ΔACB ΔDCE 均为等腰三角形,点 A D E 在同一直线上,连接 BE

(1)如图1,若 CAB = CBA = CDE = CED = 50 °

①求证: AD = BE

②求 AEB 的度数.

(2)如图2,若 ACB = DCE = 120 ° CM ΔDCE DE 边上的高, BN ΔABE AE 边上的高,试证明: AE = 2 3 CM + 2 3 3 BN

来源:2016年山东省菏泽市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, PA O 的切线, A 是切点, AC 是直径, AB 是弦,连接 PB PC PC AB 于点 E ,且 PA = PB

(1)求证: PB O 的切线;

(2)若 APC = 3 BPC ,求 PE CE 的值.

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形 ABCD 中,点 E F G H 分别为边 AB BC CD DA 的中点.求证:中点四边形 EFGH 是平行四边形;

(2)如图2,点 P 是四边形 ABCD 内一点,且满足 PA = PB PC = PD APB = CPD ,点 E F G H 分别为边 AB BC CD DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想;

(3)若改变(2)中的条件,使 APB = CPD = 90 ° ,其他条件不变,直接写出中点四边形 EFGH 的形状.(不必证明)

来源:2016年山东省德州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, AD BD O 的弦, BC O 的切线,切点为 B OC / / AD BA CD 的延长线相交于点 E

(1)求证: DC O 的切线;

(2)若 AE = 1 ED = 3 ,求 O 的半径.

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是矩形,点 A 的坐标为 ( 8 , 0 ) ,点 C 的坐标为 ( 0 , 4 ) ,把矩形 OABC 沿 OB 折叠,点 C 落在点 D 处,则点 D 的坐标为  

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题