初中数学

如图,在平面直角坐标系中,正方形 ABCD 的顶点 A 的坐标为 ( - 1 , 1 ) ,点 B x 轴正半轴上,点 D 在第三象限的双曲线 y = 6 x 上,过点 C CE / / x 轴交双曲线于点 E ,连接 BE ,则 ΔBCE 的面积为       

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ΔPAB 中, PA = PB M N K 分别是 PA PB AB 上的点,且 AM = BK BN = AK ,若 MKN = 44 ° ,则 P 的度数为 (    )

A. 44 ° B. 66 ° C. 88 ° D. 92 °

来源:2016年山东省泰安市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 2 E 为边 AB 上一点, F 为边 BC 上一点.连接 DE AF 交于点 G ,连接 BG .若 AE = BF ,则 BG 的最小值为   

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 是对角线 BD 上两点,且 EAF = 45 ° ,将 ΔADF 绕点 A 顺时针旋转 90 ° 后,得到 ΔABQ ,连接 EQ ,求证:

(1) EA QED 的平分线;

(2) E F 2 = B E 2 + D F 2

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AM BN O 的两条切线, E O 上一点,过点 E 作直线 DC 分别交 AM BN 于点 D C ,且 CB = CE

(1)求证: DA = DE

(2)若 AB = 6 CD = 4 3 ,求图中阴影部分的面积.

来源:2018年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图1,在正方形 ABCD 中,点 E F 分别是边 BC AB 上的点,且 CE = BF .连接 DE ,过点 E EG DE ,使 EG = DE ,连接 FG FC

(1)请判断: FG CE 的数量关系是           ,位置关系是             

(2)如图2,若点 E F 分别是边 CB BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;

(3)如图3,若点 E F 分别是边 BC AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

来源:2016年山东省临沂市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知 MPN 的两边分别与 O 相切于点 A B O 的半径为 r

(1)如图1,点 C 在点 A B 之间的优弧上, MPN = 80 ° ,求 ACB 的度数;

(2)如图2,点 C 在圆上运动,当 PC 最大时,要使四边形 APBC 为菱形, APB 的度数应为多少?请说明理由;

(3)若 PC O 于点 D ,求第(2)问中对应的阴影部分的周长(用含 r 的式子表示).

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题