初中数学

在平面直角坐标系中,已知,动点的图象上运动(不与重合),连接.过点,交轴于点,连接

(1)求线段长度的取值范围;

(2)试问:点运动的过程中,是否为定值?如果是,求出该值;如果不是,请说明理由.

(3)当为等腰三角形时,求点的坐标.

来源:2019年四川省攀枝花市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,将正方形纸片 ABCD 沿 PQ 折叠,使点 C 的对称点 E 落在边 AB 上,点 D 的对称点为点 F EF AD 于点 G ,连接 CG PQ 于点 H ,连接 CE .下列四个结论中:① ΔPBE ~ ΔQFG ;② S ΔCEG = S ΔCBE + S 四边形 CDQH ;③ EC 平分 BEG ;④ E G 2 - C H 2 = GQ GD ,正确的是   (填序号即可).

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于点,点,且

(1)求抛物线的解析式;

(2)点在抛物线上,且,求点的坐标;

(3)抛物线上两点,点的横坐标为,点的横坐标为.点是抛物线上之间的动点,过点轴的平行线交于点

①求的最大值;

②点关于点的对称点为,当为何值时,四边形为矩形.

来源:2019年四川省南充市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线经过点和点

(1)求抛物线的解析式及顶点的坐标;

(2)点是抛物线上之间的一点,过点轴于点轴,交抛物线于点,过点轴于点,当矩形的周长最大时,求点的横坐标;

(3)如图2,连接,点在线段上(不与重合),作交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.

来源:2019年四川省眉山市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在边长为4的正方形 ABCD 中,点 E BC 的中点,点 F CD 上,且 CF = 3 DF AE BF 相交于点 G ,则 ΔAGF 的面积是  

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,抛物线经过点,与轴相交于两点.

(1)求抛物线的函数表达式;

(2)点在抛物线的对称轴上,且位于轴的上方,将沿直线翻折得到△,若点恰好落在抛物线的对称轴上,求点和点的坐标;

(3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在边长为2的等边三角形 ABC 中, P BC 边上任意一点,过点 P 分别作 PM AB PN AC M N 分别为垂足.

(1)求证:不论点 P BC 边的何处时都有 PM + PN 的长恰好等于三角形 ABC 一边上的高;

(2)当 BP 的长为何值时,四边形 AMPN 的面积最大,并求出最大值.

来源:2017年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正方形的边长为2,的中点,延长线上的一点,连接于点

(1)求的值;

(2)如图1,连接,在线段上取一点,使,连接,求证:

(3)如图2,过点于点,在线段上取一点,使,连接.将绕点旋转,使点旋转后的对应点落在边上.请判断点旋转后的对应点是否落在线段上,并说明理由.

来源:2019年浙江省台州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,矩形中,,点分别在边上,点分别在边上,交于点,记

(1)若的值为1,当时,求的值.

(2)若的值为,求的最大值和最小值.

(3)若的值为3,当点是矩形的顶点,时,求的值.

来源:2019年浙江省绍兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,平分于点,过点于点,点是线段上的动点,连结并延长分别交于点

(1)求的长.

(2)若点是线段的中点,求的值.

(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得

来源:2019年浙江省衢州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在边长为 6 3 的正六边形 ABCDEF 中,连接 BE CF ,其中点 M N 分别为 BE CF 上的动点.若以 M N D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为   

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在等腰中,,点分别在边上,将线段绕点按逆时针方向旋转得到

(1)如图1,若,点与点重合,相交于点.求证:

(2)已知点的中点.

①如图2,若,求的长.

②若,是否存在点,使得是直角三角形?若存在,求的长;若不存在,试说明理由.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 的边长为4, C 的半径为 3 P AB 边上一动点,过点 P C 的切线 PQ ,切点为 Q ,则 PQ 的最小值为  

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图1,已知在平面直角坐标系中,四边形是矩形,点分别在轴和轴的正半轴上,连结的中点.

(1)求的长和点的坐标;

(2)如图2,是线段上的点,,点是线段上的一个动点,经过三点的抛物线交轴的正半轴于点,连结于点

①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;

②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学三角形试题