初中数学

如图,在中,

(1)已知线段的垂直平分线与边交于点,连接,求证:

(2)以点为圆心,线段的长为半径画弧,与边交于点,连接.若,求的度数.

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

中,平分于点

(1)如图1,若,求的面积;

(2)如图2,过点,交的延长线于点,分别交于点,且.求证:

来源:2019年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,于点

(1)若,求的度数;

(2)若点在边上,的延长线于点.求证:

来源:2019年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平行四边形中,点在边上,连接,垂足为,交于点,垂足为,垂足为,交于点,点上一点,连接

(1)若,求的面积.

(2)若,求证:

来源:2019年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,边上的中点,连结平分于点,过点于点

(1)若,求的度数;

(2)求证:

来源:2019年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

抛物线轴交于点(点在点的左边),与轴交于点,点是该抛物线的顶点.

(1)如图1,连接,求线段的长;

(2)如图2,点是直线上方抛物线上一点,轴于点与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;

(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点的对应点分别是点,直线分别与直线轴交于点.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.

来源:2018年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,,点在对角线上,于点的延长线交于点.点的延长线上,且,连接

(1)若,求的长;

(2)求证:

来源:2018年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,的顶点分别落在直线上,于点平分.若,求的度数.

来源:2018年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平行四边形中,点是对角线的中点,点上一点,且,连接并延长交于点.过点的垂线,垂足为,交于点

(1)若,求的面积;

(2)若,求证:

来源:2018年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,中,,点上一点,连接

(1)如图1,若,求的长;

(2)如图2,点是线段延长线上一点,过点于点,连接,当时,求证:

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于两点,与轴交于点,过点轴于点,点是线段的中点,,点的坐标为

(1)求该反比例函数和一次函数的解析式;

(2)求的面积.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,直线,点上,于点,若,点上,求的度数.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(a卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

中,,垂足为,点延长线上一点,连接

(1)如图1,若,求的长;

(2)如图2,点是线段上一点,,点外一点,,连接并延长交于点,且点是线段的中点,求证:

来源:2017年重庆市中考数学试卷(a卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学三角形解答题