在中,,,是的中点.为直线上一动点,连接.过点作,交直线于点,连接.
(1)如图1,当是线段的中点时,设,,求的长(用含,的式子表示);
(2)当点在线段的延长线上时,依题意补全图2,用等式表示线段,,之间的数量关系,并证明.
如图,为的直径,为延长线上一点,是的切线,为切点,于点,交于点.
(1)求证:;
(2)若,,求的长.
已知:如图, 为锐角三角形, , .
求作:线段 ,使得点 在直线 上,且 .
作法:①以点 为圆心, 长为半径画圆,交直线 于 , 两点;
②连接 .
线段 就是所求作的线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明: ,
.
,
点 在 上.
又 点 , 都在 上,
(填推理的依据).
.
如图,已知四边形ABCD中,∠C=∠D=90°,AE平分∠DAB,BE平分∠ABC,且E在D上.
(1)求∠AEB;
(2)求证:DE=CE.
已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
如图,已知的中垂线交于点,交于点,有下面3个结论:
①是等腰三角形;
②∽;
③点D是线段AC的黄金分割点.
请你从以上结论中只选一个加以证明
如图,△ABC中,AC=BC,以BC上一点O为圆心,OB为半径作⊙O交AB于点D已知经过点D的⊙O切线恰好经过点C
(1)试判断CD与AC的位置关系,并证明;
(2)若△ACB∽△CDB,且AC=3,求图中阴影部分的面积
如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为,四边形EFQP的面积为,四边形PQCB的面积为
(1)求证:EF+PQ=BC
(2)若+=,求的值
(3)若-=,直接写出的值
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
中国对南沙群岛及其附近海域拥有无可争辩的主权。2015年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域。中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.
(1)请用直尺和圆规作出C处的位置;
(2)求盐城舰行驶的航程BC的长.
阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
(1)的值为 ;
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.
求的值;
若CD=2,求BP的长.
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.
(1)求证:△ADE是等腰三角形;
(2)若AD=2,求BE的长.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.