如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为,四边形EFQP的面积为,四边形PQCB的面积为(1)求证:EF+PQ=BC(2)若+=,求的值(3)若-=,直接写出的值
)某水产品店试销一种成本为50元/千克的水产品,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(千克)与销售单价x(元/千克)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若水产品店试销的这种水产品所获得的利润Q元,试写出利润Q(元)与销售单价x(元/千克)之间的函数关系式;当试销单价定为多少元时,该水产品店可获最大利润?最大利润是多少元?(3)若该水产品店试销这种水产品所获得的利润不低于600元,请确定销售单价x的取值范围.
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
已知二次函数.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)若该二次函数图象与x轴的交点为A,B,求△ABC的面积.
已知关于的一元二次方程方程有两个不相等的实数根.(1)求的取值范围;(2)当取最大整数时,不解方程直接写出方程的两根之和与两根之积.