初中数学

在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F G 在直线 BC 上,且 BE = EG AEF = BEG

(1)如图1,求证: ΔABE ΔFGE

(2)如图2,当 ABC = 120 ° 时,求证: AB = BE + BF

(3)如图3,当 ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB BE BF 的数量关系如何?(请直接写出你猜想的结论)

来源:2017年辽宁省阜新市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( 1 , 5 ) B ( 4 , 2 ) C ( 2 , 2 )

(1)平移 ΔABC ,使点 B 移动到点 B 1 ( 1 , 1 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 C 1 的坐标.

(2)画出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2

(3)线段 A A 1 的长度为  

来源:2017年辽宁省阜新市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, OF MON 的平分线,点 A 在射线 OM 上, P Q 是直线 ON 上的两动点,点 Q 在点 P 的右侧,且 PQ = OA ,作线段 OQ 的垂直平分线,分别交直线 OF ON 于点 B 、点 C ,连接 AB PB

(1)如图1,当 P Q 两点都在射线 ON 上时,请直接写出线段 AB PB 的数量关系;

(2)如图2,当 P Q 两点都在射线 ON 的反向延长线上时,线段 AB PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3, MON = 60 ° ,连接 AP ,设 AP OQ = k ,当 P Q 两点都在射线 ON 上移动时, k 是否存在最小值?若存在,请直接写出 k 的最小值;若不存在,请说明理由.

来源:2017年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 按如图所示方式放置,点 D ΔABC 内,连接 BD CD CE ,且 DCE = 90 °

(1)如图①,当 ΔABC ΔADE 均为等边三角形时,试确定 AD BD CD 三条线段的关系,并说明理由;

(2)如图②,当 BA = BC = 2 AC DA = DE = 2 AE 时,试确定 AD BD CD 三条线段的关系,并说明理由;

(3)如图③,当 AB : BC : AC = AD : DE : AE = m : n : p 时,请直接写出 AD BD CD 三条线段的关系.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 于点 D E AB 上一点,以 CE 为直径的 O BC 于点 F ,连接 DO ,且 DOC = 90 °

(1)求证: AB O 的切线;

(2)若 DF = 2 DC = 6 ,求 BE 的长.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OB = OD OC = OA + AB AD = m BC = n ABD + ADB = ACB

(1)填空: BAD ACB 的数量关系为  BAD + ACB = 180 °  

(2)求 m n 的值;

(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BE AC ,垂足 E CA 的延长线上, DF AC ,垂足 F AC 的延长线上,求证: AE = CF

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中,点 D AB 上,点 E BC 延长线上一点,且 AD = CE ,连接 DE AC 于点 F

(1)猜想证明:如图1,在 ΔABC 中,若 AB = BC ,学生们发现: DF = EF .下面是两位学生的证明思路:

思路1:过点 D DG / / BC ,交 AC 于点 G ,可证 ΔDFG ΔEFC 得出结论;

思路2:过点 E EH / / AB ,交 AC 的延长线于点 H ,可证 ΔADF ΔHEF 得出结论;

请你参考上面的思路,证明 DF = EF (只用一种方法证明即可).

(2)类比探究:在(1)的条件下(如图 1 ) ,过点 D DM AC 于点 M ,试探究线段 AM MF FC 之间满足的数量关系,并证明你的结论.

(3)延伸拓展:如图2,在 ΔABC 中,若 AB = AC ABC = 2 BAC AB BC = m ,请你用尺规作图在图2中作出 AD 的垂直平分线交 AC 于点 N (不写作法,只保留作图痕迹),并用含 m 的代数式直接表示 NF AC 的值.

来源:2017年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,以 ΔABC 的边 AC 为直径的 O AB 边于点 M ,交 BC 边于点 N ,连接 AN ,过点 C 的切线交 AB 的延长线于点 P BCP = BAN

(1)求证: ΔABC 为等腰三角形.

(2)求证: AM · CP = AN · CB

来源:2017年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC ABC = α ,过点 A 作直线 MN ,使 MN / / BC ,点 D 在直线 MN 上,作射线 BD ,将射线 BD 绕点 B 顺时针旋转角 α 后交直线 AC 于点 E

(1)如图①,当 α = 60 ° ,且点 D 在射线 AN 上时,直接写出线段 AB AD AE 的数量关系.

(2)如图②,当 α = 45 ° ,且点 D 在射线 AN 上时,直写出线段 AB AD AE 的数量关系,并说明理由.

(3)当 α = 30 ° 时,若点 D 在射线 AM 上, ABE = 15 ° AD = 3 1 ,请直接写出线段 AE 的长度.

来源:2017年辽宁省本溪市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, MBN = 90 ° ,点 C MBN 平分线上的一点,过点 C 分别作 AC BC CE BN ,垂足分别为点 C E AC = 4 2 ,点 P 为线段 BE 上的一点(点 P 不与点 B E 重合),连接 CP ,以 CP 为直角边,点 P 为直角顶点,作等腰直角三角形 CPD ,点 D 落在 BC 左侧.

(1)求证: CP CD = CE CB

(2)连接 BD ,请你判断 AC BD 的位置关系,并说明理由;

(3)设 PE = x ΔPBD 的面积为 S ,求 S x 之间的函数关系式.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD AB ,垂足为点 D ,交 y 轴于点 E

(1)求直线 CE 的解析式;

(2)在线段 AB 上有一动点 P (不与点 A B 重合),过点 P 分别作 PM x 轴, PN y 轴,垂足为点 M N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° ,点 M AB 的中点,连接 MC ,点 P 是线段 BC 延长线上一点,且 PC < BC ,连接 MP AC 于点 H .将射线 MP 绕点 M 逆时针旋转 60 ° 交线段 CA 的延长线于点 D

(1)找出与 AMP 相等的角,并说明理由.

(2)如图2, CP = 1 2 BC ,求 AD BC 的值.

(3)在(2)的条件下,若 MD = 13 3 ,求线段 AB 的长.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC DE 垂直平分 AB ,交线段 BC 于点 E (点 E 与点 C 不重合),点 F AC 上一点,点 G AB 上一点(点 G 与点 A 不重合),且 GEF + BAC = 180 °

(1)如图1,当 B = 45 ° 时,线段 AG CF 的数量关系是  

(2)如图2,当 B = 30 ° 时,猜想线段 AG CF 的数量关系,并加以证明.

(3)若 AB = 6 DG = 1 cos B = 3 4 ,请直接写出 CF 的长.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知矩形 ABCD 中,点 E F 分别是 AD AB 上的点, EF EC ,且 AE = CD

(1)求证: AF = DE

(2)若 DE = 2 5 AD ,求 tan AFE

来源:2019年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学三角形解答题