初中数学

已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE ,过点 C CN BE ,垂足为 M ,交 AB 于点 N

(1)求证: ΔABE ΔBCN

(2)若 N AB 的中点,求 tan ABE

来源:2018年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

ΔABC 中, M AC 边上的一点,连接 BM .将 ΔABC 沿 AC 翻折,使点 B 落在点 D 处,当 DM / / AB 时,求证:四边形 ABMD 是菱形.

来源:2017年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知 ΔABC ,以 AB 为直径的 O 分别交 AC D BC E ,连接 ED ,若 ED = EC

(1)求证: AB = AC

(2)若 AB = 4 BC = 2 3 ,求 CD 的长.

来源:2016年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AB CD 上的一点,且 DF = BE .求证: AF = CE

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, D ΔABC 外接圆上的动点,且 B D 位于 AC 的两侧, DE AB ,垂足为 E DE 的延长线交此圆于点 F BG AD ,垂足为 G BG DE 于点 H DC FB 的延长线交于点 P ,且 PC = PB

(1)求证: BG / / CD

(2)设 ΔABC 外接圆的圆心为 O ,若 AB = 3 DH OHD = 80 ° ,求 BDE 的大小.

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AD BC 分别相交于点 E F .求证: OE = OF

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知四边形 ABCD O 的内接四边形, AC O 的直径, DE AB ,垂足为 E

(1)延长 DE O 于点 F ,延长 DC FB 交于点 P ,如图1.求证: PC = PB

(2)过点 B BG AD ,垂足为 G BG DE 于点 H ,且点 O 和点 A 都在 DE 的左侧,如图2.若 AB = 3 DH = 1 OHD = 80 ° ,求 BDE 的大小.

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AD BC 分别相交于点 E F .求证: OE = OF

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,如果对角线 AC BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.

(1)①在“平行四边形、矩形、菱形”中,      一定是等角线四边形(填写图形名称);

②若 M N P Q 分别是等角线四边形 ABCD 四边 AB BC CD DA 的中点,当对角线 AC BD 还要满足  时,四边形 MNPQ 是正方形.

(2)如图2,已知 ΔABC 中, ABC = 90 ° AB = 4 BC = 3 D 为平面内一点.

①若四边形 ABCD 是等角线四边形,且 AD = BD ,则四边形 ABCD 的面积是   

②设点 E 是以 C 为圆心,1为半径的圆上的动点,若四边形 ABED 是等角线四边形,写出四边形 ABED 面积的最大值,并说明理由.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,在菱形 ABCD 中, AB = 6 5 tan ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CF

(1)求证: BE = DF

(2)当 t =          秒时, DF 的长度有最小值,最小值等于            

(3)如图2,连接 BD EF BD EC EF 于点 P Q ,当 t 为何值时, ΔEPQ 是直角三角形?

(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如果三角形三边的长 a b c 满足 a + b + c 3 = b ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.

(1)如图1,已知两条线段的长分别为 a c ( a < c ) .用直尺和圆规作一个最短边、最长边的长分别为 a c 的“匀称三角形”(不写作法,保留作图痕迹);

(2)如图2, ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D O 的切线交 AB 延长线于点 E ,交 AC 于点 F ,若 BE CF = 5 3 ,判断 ΔAEF 是否为“匀称三角形”?请说明理由.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

思维启迪:

(1)如图1, A B 两点分别位于一个池塘的两端,小亮想用绳子测量 A B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达 B 点的点 C ,连接 BC ,取 BC 的中点 P (点 P 可以直接到达 A 点),利用工具过点 C CD / / AB AP 的延长线于点 D ,此时测得 CD = 200 米,那么 A B 间的距离是 200 米.

思维探索:

(2)在 ΔABC ΔADE 中, AC = BC AE = DE ,且 AE < AC ACB = AED = 90 ° ,将 ΔADE 绕点 A 顺时针方向旋转,把点 E AC 边上时 ΔADE 的位置作为起始位置(此时点 B 和点 D 位于 AC 的两侧),设旋转角为 α ,连接 BD ,点 P 是线段 BD 的中点,连接 PC PE

①如图2,当 ΔADE 在起始位置时,猜想: PC PE 的数量关系和位置关系分别是  

②如图3,当 α = 90 ° 时,点 D 落在 AB 边上,请判断 PC PE 的数量关系和位置关系,并证明你的结论;

③当 α = 150 ° 时,若 BC = 3 DE = 1 ,请直接写出 P C 2 的值.

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线 y = kx + 4 ( k 0 ) x 轴于点 A ( 8 , 0 ) ,交 y 轴于点 B

(1) k 的值是  

(2)点 C 是直线 AB 上的一个动点,点 D 和点 E 分别在 x 轴和 y 轴上.

①如图,点 E 为线段 OB 的中点,且四边形 OCED 是平行四边形时,求 OCED 的周长;

②当 CE 平行于 x 轴, CD 平行于 y 轴时,连接 DE ,若 ΔCDE 的面积为 33 4 ,请直接写出点 C 的坐标.

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,点 E 和点 F 是对角线 AC 上的两点, AE = CF DF = BE ,且 DF / / BE ,过点 C CG AB AB 的延长线于点 G

(1)求证:四边形 ABCD 是平行四边形;

(2)若 tan CAB = 2 5 CBG = 45 ° BC = 4 2 ,则 ABCD 的面积是  

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形, BAD = 120 ° ,点 E 在射线 AC 上(不包括点 A 和点 C ) ,过点 E 的直线 GH 交直线 AD 于点 G ,交直线 BC 于点 H ,且 GH / / DC ,点 F BC 的延长线上, CF = AG ,连接 ED EF DF

(1)如图1,当点 E 在线段 AC 上时,

①判断 ΔAEG 的形状,并说明理由.

②求证: ΔDEF 是等边三角形.

(2)如图2,当点 E AC 的延长线上时, ΔDEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.

来源:2019年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学三角形解答题