如图,四边形 ABCD 是菱形, ∠ BAD = 120 ° ,点 E 在射线 AC 上(不包括点 A 和点 C ) ,过点 E 的直线 GH 交直线 AD 于点 G ,交直线 BC 于点 H ,且 GH / / DC ,点 F 在 BC 的延长线上, CF = AG ,连接 ED , EF , DF .
(1)如图1,当点 E 在线段 AC 上时,
①判断 ΔAEG 的形状,并说明理由.
②求证: ΔDEF 是等边三角形.
(2)如图2,当点 E 在 AC 的延长线上时, ΔDEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.
如图,已知 BC⊥ AC,圆心 O在 AC上,点 M与点 C分别是 AC与⊙ O的交点,点 D是 MB与⊙ O的交点,点 P是 AD延长线与 BC的交点,且 AD AP = AM AO .
(1)求证: PD是⊙ O的切线;
(2)若 AD=12, AM= MC,求 BP MD 的值.
已知关于 x的一元二次方程 ax 2+ bx+ c=0( a≠0)有两个实数根 x 1, x 2,请用配方法探索有实数根的条件,并推导出求根公式,证明 x 1• x 2= c a .
已知变量 x、 y对应关系如下表已知值呈现的对应规律.
x
…
﹣4
﹣3
﹣2
﹣1
1
2
3
4
y
1 2
2 3
﹣ 2 3
﹣ 1 2
(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;
(2)在这个函数图象上有一点 P( x, y)( x<0),过点 P分别作 x轴和 y轴的垂线,并延长与直线 y= x﹣2交于 A、 B两点,若△ PAB的面积等于 25 2 ,求出 P点坐标.
如图,一座山的一段斜坡 BD的长度为600米,且这段斜坡的坡度 i=1:3(沿斜坡从 B到 D时,其升高的高度与水平前进的距离之比).已知在地面 B处测得山顶 A的仰角为33°,在斜坡 D处测得山顶 A的仰角为45°.求山顶 A到地面 BC的高度 AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)
如图,已知 A(6,0), B(8,5),将线段 OA平移至 CB,点 D在 x轴正半轴上(不与点 A重合),连接 OC, AB, CD, BD.
(1)求对角线 AC的长;
(2)设点 D的坐标为( x,0),△ ODC与△ ABD的面积分别记为 S 1, S 2.设 S= S 1﹣ S 2,写出 S关于 x的函数解析式,并探究是否存在点 D使 S与△ DBC的面积相等?如果存在,用坐标形式写出点 D的位置;如果不存在,说明理由.