初中数学

如图,平面内的两条直线 l 1 l 2 ,点 A B 在直线 l 1 上,点 C D 在直线 l 2 上,过 A B 两点分别作直线 l 2 的垂线,垂足分别为 A 1 B 1 ,我们把线段 A 1 B 1 叫做线段 AB 在直线 l 2 上的正投影,其长度可记作 T ( AB , CD ) T ( AB , l 2 ) ,特别地线段 AC 在直线 l 2 上的正投影就是线段 A 1 C

请依据上述定义解决如下问题:

(1)如图1,在锐角 ΔABC 中, AB = 5 T ( AC , AB ) = 3 ,则 T ( BC , AB ) =       

(2)如图2,在 Rt Δ ABC 中, ACB = 90 ° T ( AC , AB ) = 4 T ( BC , AB ) = 9 ,求 ΔABC 的面积;

(3)如图3,在钝角 ΔABC 中, A = 60 ° ,点 D AB 边上, ACD = 90 ° T ( AD , AC ) = 2 T ( BC , AB ) = 6 ,求 T ( BC , CD )

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC = 4 ACB = 90 ° ,正方形 BDEF 的边长为2,将正方形 BDEF 绕点 B 旋转一周,连接 AE BE CD

(1)请找出图中与 ΔABE 相似的三角形,并说明理由;

(2)求当 A E F 三点在一直线上时 CD 的长;

(3)设 AE 的中点为 M ,连接 FM ,试求 FM 长的取值范围.

来源:2019年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, A 为反比例函数 y = k x (其中 x > 0 ) 图象上的一点,在 x 轴正半轴上有一点 B OB = 4 .连接 OA AB ,且 OA = AB = 2 10

(1)求 k 的值;

(2)过点 B BC OB ,交反比例函数 y = k x (其中 x > 0 ) 的图象于点 C ,连接 OC AB 于点 D ,求 AD DB 的值.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

定义:若实数 x y 满足 x 2 = 2 y + t y 2 = 2 x + t ,且 x y t 为常数,则称点 M ( x , y ) 为“线点”.例如,点 ( 0 , - 2 ) ( - 2 , 0 ) 是“线点”.已知:在直角坐标系 xOy 中,点 P ( m , n )

(1) P 1 ( 3 , 1 ) P 2 ( - 3 , 1 ) 两点中,点     是“线点”;

(2)若点 P 是“线点”,用含 t 的代数式表示 mn ,并求 t 的取值范围;

(3)若点 Q ( n , m ) 是“线点”,直线 PQ 分别交 x 轴、 y 轴于点 A B ,当 | POQ - AOB | = 30 ° 时,直接写出 t 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° BC = 1 ,以边 AC 上一点 O 为圆心, OA 为半径的 O 经过点 B

(1)求 O 的半径;

(2)点 P 为劣弧 AB 中点,作 PQ AC ,垂足为 Q ,求 OQ 的长;

(3)在(2)的条件下,连接 PC ,求 tan PCA 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,有一池塘,要测池塘两端 A B 的距离,可先在平地上取一个点 C ,从点 C 不经过池塘可以直接到达点 A B .连接 AC 并延长到点 D ,使 CD = CA .连接 BC 并延长到点 E ,使 CE = CB .连接 DE ,那么量出 DE 的长就是 A B 的距离.为什么?

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,在 ΔABC 中, AB = AC = 3 BAC = 100 ° D BC 的中点.小明对图①进行了如下探究:在线段 AD 上任取一点 P ,连接 PB .将线段 PB 绕点 P 按逆时针方向旋转 80 ° ,点 B 的对应点是点 E ,连接 BE ,得到 ΔBPE .小明发现,随着点 P 在线段 AD 上位置的变化,点 E 的位置也在变化,点 E 可能在直线 AD 的左侧,也可能在直线 AD 上,还可能在直线 AD 的右侧.

请你帮助小明继续探究,并解答下列问题:

(1)当点 E 在直线 AD 上时,如图②所示.

BEP =        °

②连接 CE ,直线 CE 与直线 AB 的位置关系是      

(2)请在图③中画出 ΔBPE ,使点 E 在直线 AD 的右侧,连接 CE .试判断直线 CE 与直线 AB 的位置关系,并说明理由.

(3)当点 P 在线段 AD 上运动时,求 AE 的最小值.

来源:2019年江苏省淮安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 O 中,半径 OA OB ,过点 OA 的中点 C FD / / OB O D F 两点,且 CD = 3 ,以 O 为圆心, OC 为半径作 CE ̂ ,交 OB E 点.

(1)求 O 的半径 OA 的长;

(2)计算阴影部分的面积.

来源:2016年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线相交于点 O ,点 M N 分别是边 BC CD 上的动点(不与点 B C D 重合), AM AN 分别交 BD 于点 E F ,且 MAN 始终保持 45 ° 不变.

(1)求证: AF AM = 2 2

(2)求证: AF FM

(3)请探索:在 MAN 的旋转过程中,当 BAM 等于多少度时, FMN = BAM ?写出你的探索结论,并加以证明.

来源:2016年山东省淄博市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

(1)已知: ΔABC 是等腰三角形,其底边是 BC ,点 D 在线段 AB 上, E 是直线 BC 上一点,且 DEC = DCE ,若 A = 60 ° (如图①).求证: EB = AD

(2)若将(1)中的“点 D 在线段 AB 上”改为“点 D 在线段 AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;

(3)若将(1)中的“若 A = 60 ° ”改为“若 A = 90 ° ”,其它条件不变,则 EB AD 的值是多少?(直接写出结论,不要求写解答过程)

来源:2016年山东省泰安市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究

如图1,在四边形 ABCD 中, AB = AD BAD = 60 ° ABC = ADC = 90 ° ,点 E F 分别在线段 BC CD 上, EAF = 30 ° ,连接 EF

(1)如图2,将 ΔABE 绕点 A 逆时针旋转 60 ° 后得到△ A ' B ' E ' ( A ' B ' AD 重合),请直接写出 E ' AF =      度,线段 BE EF FD 之间的数量关系为       

(2)如图3,当点 E F 分别在线段 BC CD 的延长线上时,其他条件不变,请探究线段 BE EF FD 之间的数量关系,并说明理由.

(二)拓展延伸

如图4,在等边 ΔABC 中, E F 是边 BC 上的两点, EAF = 30 ° BE = 1 ,将 ΔABE 绕点 A 逆时针旋转 60 ° 得到△ A ' B ' E ' ( A ' B ' AC 重合),连接 EE ' AF EE ' 交于点 N ,过点 A AM BC 于点 M ,连接 MN ,求线段 MN 的长度.

来源:2016年山东省济南市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

(1)如图1,在菱形 ABCD 中, CE = CF ,求证: AE = AF

(2)如图2, AB O 的直径, PA O 相切于点 A OP O 相交于点 C ,连接 CB OPA = 40 ° ,求 ABC 的度数.

来源:2016年山东省济南市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学三角形计算题