如图,在平面直角坐标系中,四边形 为正方形,点 , 在 轴上,抛物线 经过点 , 两点,且与直线 交于另一点 .
(1)求抛物线的解析式;
(2) 为抛物线对称轴上一点, 为平面直角坐标系中的一点,是否存在以点 , , , 为顶点的四边形是以 为边的菱形.若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 为 轴上一点,过点 作抛物线对称轴的垂线,垂足为 ,连接 , ,探究 是否存在最小值.若存在,请求出这个最小值及点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于点 , ,与 轴交于点 ,已知 , 两点坐标分别是 , ,连接 , .
(1)求抛物线的表达式和 所在直线的表达式;
(2)将 沿 所在直线折叠,得到 ,点 的对应点 是否落在抛物线的对称轴上,若点 在对称轴上,请求出点 的坐标;若点 不在对称轴上,请说明理由;
(3)若点 是抛物线位于第三象限图象上的一动点,连接 交 于点 ,连接 , 的面积记为 , 的面积记为 ,求 的值最大时点 的坐标.
如图,已知抛物线 与 轴交于点 和 ,与 轴交于点 ,对称轴为直线 .
(1)求抛物线的解析式;
(2)如图1,若点 是线段 上的一个动点(不与点 , 重合),过点 作 轴的平行线交抛物线于点 ,连接 ,当线段 长度最大时,判断四边形 的形状并说明理由;
(3)如图2,在(2)的条件下, 是 的中点,过点 的直线与抛物线交于点 ,且 .在 轴上是否存在点 ,得 为等腰三角形?若存在,求点 的坐标;若不存在,请说明理由.
如图所示,抛物线与 轴交于 、 两点,与 轴交于点 ,且 , , ,抛物线的对称轴与直线 交于点 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)若点 是对称轴上的一个动点,是否存在以 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标,若不存在,请说明理由;
(3) 为 的中点,一个动点 从 点出发,先到达 轴上的点 ,再走到抛物线对称轴上的点 ,最后返回到点 .要使动点 走过的路程最短,请找出点 、 的位置,写出坐标,并求出最短路程.
(4)点 是抛物线上位于 轴上方的一点,点 在 轴上,是否存在以点 为直角顶点的等腰 ?若存在,求出点 的坐标,若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 ,点 (点 在点 的左边),与 轴交于点 ,点 为抛物线的顶点,连接 .直线 经过点 ,且与 轴交于点 .
(1)求抛物线的解析式;
(2)点 是抛物线上的一点,当 是以 为腰的等腰三角形时,求点 的坐标;
(3)点 为线段 上的一点,点 为线段 上的一点,连接 ,并延长 与线段 交于点 (点 在第一象限),当 且 时,求出点 的坐标.
如图,抛物线 与 轴交于原点 和点 ,且其顶点 关于 轴的对称点坐标为 .
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点 ,使得抛物线 上的任意一点 到定点 的距离与点 到直线 的距离总相等.
①证明上述结论并求出点 的坐标;
②过点 的直线 与抛物线 交于 , 两点.
证明:当直线 绕点 旋转时, 是定值,并求出该定值;
(3)点 是该抛物线上的一点,在 轴, 轴上分别找点 , ,使四边形 周长最小,直接写出 , 的坐标.
抛物线 与 轴相交于点 ,且抛物线的对称轴为 , 为对称轴与 轴的交点.
(1)求抛物线的解析式;
(2)在 轴上方且平行于 轴的直线与抛物线从左到右依次交于 、 两点,若 是等腰直角三角形,求 的面积;
(3)若 是对称轴上一定点, 是抛物线上的动点,求 的最小值(用含 的代数式表示).
如图,在平面直角坐标系 中,抛物线 与两坐标轴分别相交于 , , 三点.
(1)求证: ;
(2)点 是第一象限内该抛物线上的动点,过点 作 轴的垂线交 于点 ,交 轴于点 .
①求 的最大值;
②点 是 的中点,若以点 , , 为顶点的三角形与 相似,求点 的坐标.
如图,在平面直角坐标系中,抛物线 经过坐标原点,与 轴正半轴交于点 ,点 是抛物线上一动点.
(1)如图1,当 , ,且 时,
①求点 的坐标;
②若点 , 在该抛物线上,连接 , , 是线段 上一动点(点 与点 , 不重合),过点 作 ,交 轴于点 ,线段 与 是否相等?请说明理由;
(2)如图2,该抛物线的对称轴交 轴于点 ,点 在对称轴上,当 , ,且直线 交 轴的负半轴于点 时,过点 作 轴的垂线,交直线 于点 , 为 轴上一点,点 的坐标为 ,连接 .若 ,求证:射线 平分 .
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.
已知二次函数 .
(1)求二次函数图象的顶点坐标;
(2)当 时,函数的最大值和最小值分别为多少?
(3)当 时,函数的最大值为 ,最小值为 ,若 ,求 的值.
二次函数 的图象交 轴于原点 及点 .
感知特例
(1)当 时,如图1,抛物线 上的点 , , , , 分别关于点 中心对称的点为 , , , , ,如表:
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
①补全表格;
②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 .
形成概念
我们发现形如(1)中的图象 上的点和抛物线 上的点关于点 中心对称,则称 是 的“孔像抛物线”.例如,当 时,图2中的抛物线 是抛物线 的“孔像抛物线”.
探究问题
(2)①当 时,若抛物线 与它的“孔像抛物线” 的函数值都随着 的增大而减小,则 的取值范围为 ;
②在同一平面直角坐标系中,当 取不同值时,通过画图发现存在一条抛物线与二次函数 的所有“孔像抛物线” 都有唯一交点,这条抛物线的解析式可能是 (填“ ”或“ ”或“ ”或“ ”,其中 ;
③若二次函数 及它的“孔像抛物线”与直线 有且只有三个交点,求 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 ,与 轴交于点 .
(1) , ;
(2)若点 在该二次函数的图象上,且 ,求点 的坐标;
(3)若点 是该二次函数图象上位于 轴上方的一点,且 ,写出点 的坐标.