如图,在平面直角坐标系中,四边形 ABCD 为正方形,点 A , B 在 x 轴上,抛物线 y = x 2 + bx + c 经过点 B , D ( - 4 , 5 ) 两点,且与直线 DC 交于另一点 E .
(1)求抛物线的解析式;
(2) F 为抛物线对称轴上一点, Q 为平面直角坐标系中的一点,是否存在以点 Q , F , E , B 为顶点的四边形是以 BE 为边的菱形.若存在,请求出点 F 的坐标;若不存在,请说明理由;
(3) P 为 y 轴上一点,过点 P 作抛物线对称轴的垂线,垂足为 M ,连接 ME , BP ,探究 EM + MP + PB 是否存在最小值.若存在,请求出这个最小值及点 M 的坐标;若不存在,请说明理由.
(本小题满分11分)如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是 ,位置关系是 ;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
(本小题满分9分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
(本小题满分9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
(本小题满分7分)小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
(本小题满分7分)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.