如图,在平面直角坐标系中,四边形 ABCD 为正方形,点 A , B 在 x 轴上,抛物线 y = x 2 + bx + c 经过点 B , D ( - 4 , 5 ) 两点,且与直线 DC 交于另一点 E .
(1)求抛物线的解析式;
(2) F 为抛物线对称轴上一点, Q 为平面直角坐标系中的一点,是否存在以点 Q , F , E , B 为顶点的四边形是以 BE 为边的菱形.若存在,请求出点 F 的坐标;若不存在,请说明理由;
(3) P 为 y 轴上一点,过点 P 作抛物线对称轴的垂线,垂足为 M ,连接 ME , BP ,探究 EM + MP + PB 是否存在最小值.若存在,请求出这个最小值及点 M 的坐标;若不存在,请说明理由.
如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.
列方程或方程组解应用题: 重量相同的甲、乙两种商品,分别价值900元和1 500元,已知甲种商品每千克的价值比乙种商品每千克的价值少100元,分别求甲、乙两种商品每千克的价值.
如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于一、三象限的A、B两点,与x轴交于点C.已知,,. (1)求反比例函数和一次函数的解析式; (2)求△OBC的面积.
已知,求的值.
已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB =∠D.求证:BC =ED.