初中数学

如图,在平面直角坐标系 xOy 中,抛物线 y = 3 x 2 + bx + c 过点 A ( 0 , 2 ) B ( 2 , 0 ) ,点 C 为第二象限抛物线上一点,连接 AB AC BC ,其中 AC x 轴交于点 E ,且 tan OBC = 2

(1)求点 C 坐标;

(2)点 P ( m , 0 ) 为线段 BE 上一动点 ( P 不与 B E 重合),过点 P 作平行于 y 轴的直线 l ΔABC 的边分别交于 M N 两点,将 ΔBMN 沿直线 MN 翻折得到△ B ' MN ,设四边形 B ' NBM 的面积为 S ,在点 P 移动过程中,求 S m 的函数关系式;

(3)在(2)的条件下,若 S = 3 S ΔACB ' ,请写出所有满足条件的 m 值.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y =﹣ x 2 + bx + c 的图象与坐标轴相交于 ABC三点,其中 A点坐标为(3,0), B点坐标为(﹣1,0),连接 ACBC.动点 P从点 A出发,在线段 AC上以每秒 2 个单位长度向点 C做匀速运动;同时,动点 Q从点 B出发,在线段 BA上以每秒1个单位长度向点 A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接 PQ,设运动时间为 t秒.

(1)求 bc的值.

(2)在 PQ运动的过程中,当 t为何值时,四边形 BCPQ的面积最小,最小值为多少?

(3)在线段 AC上方的抛物线上是否存在点 M,使△ MPQ是以点 P为直角顶点的等腰直角三角形?若存在,请求出点 M的坐标;若不存在,请说明理由.

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,且 B ( - 1 , 0 ) C ( 0 , 3 )

(1)求抛物线的解析式;

(2)如图1,点 P 是抛物线上位于直线 AC 上方的一点, BP AC 相交于点 E ,当 PE : BE = 1 : 2 时,求点 P 的坐标;

(3)如图2,点 D 是抛物线的顶点,将抛物线沿 CD 方向平移,使点 D 落在点 D ' 处,且 D D ' = 2 CD ,点 M 是平移后所得抛物线上位于 D ' 左侧的一点, MN / / y 轴交直线 O D ' 于点 N ,连结 CN .当 5 5 D ' N + CN 的值最小时,求 MN 的长.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 - 2 bx + b ( a 0 ) y 轴相交于点 C ( 0 , - 3 ) ,且抛物线的对称轴为 x = 3 D 为对称轴与 x 轴的交点.

(1)求抛物线的解析式;

(2)在 x 轴上方且平行于 x 轴的直线与抛物线从左到右依次交于 E F 两点,若 ΔDEF 是等腰直角三角形,求 ΔDEF 的面积;

(3)若 P ( 3 , t ) 是对称轴上一定点, Q 是抛物线上的动点,求 PQ 的最小值(用含 t 的代数式表示).

来源:2021年湖北省黄石市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴相交于点 A ( - 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C

(1)求 b c 的值;

(2)点 P ( m , n ) 为抛物线上的动点,过 P x 轴的垂线交直线 l : y = x 于点 Q

①当 0 < m < 3 时,求当 P 点到直线 l : y = x 的距离最大时 m 的值;

②是否存在 m ,使得以点 O C P Q 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 m 的值.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图所示,抛物线与 x 轴交于 A B 两点,与 y 轴交于点 C ,且 OA = 2 OB = 4 OC = 8 ,抛物线的对称轴与直线 BC 交于点 M ,与 x 轴交于点 N

(1)求抛物线的解析式;

(2)若点 P 是对称轴上的一个动点,是否存在以 P C M 为顶点的三角形与 ΔMNB 相似?若存在,求出点 P 的坐标,若不存在,请说明理由;

(3) D CO 的中点,一个动点 G D 点出发,先到达 x 轴上的点 E ,再走到抛物线对称轴上的点 F ,最后返回到点 C .要使动点 G 走过的路程最短,请找出点 E F 的位置,写出坐标,并求出最短路程.

(4)点 Q 是抛物线上位于 x 轴上方的一点,点 R x 轴上,是否存在以点 Q 为直角顶点的等腰 Rt Δ CQR ?若存在,求出点 Q 的坐标,若不存在,请说明理由.

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - 1 2 x 2 + bx + c x 轴交于 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C .连接 AC BC ,点 P 在抛物线上运动.

(1)求抛物线的表达式;

(2)如图①,若点 P 在第四象限,点 Q PA 的延长线上,当 CAQ = CBA + 45 ° 时,求点 P 的坐标;

(3)如图②,若点 P 在第一象限,直线 AP BC 于点 F ,过点 P x 轴的垂线交 BC 于点 H ,当 ΔPFH 为等腰三角形时,求线段 PH 的长.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) ( 2021 , 2021 ) 都是"雁点".

(1)求函数 y = 4 x 图象上的"雁点"坐标;

(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M N 两点(点 M 在点 N 的左侧).当 a > 1 时.

①求 c 的取值范围;

②求 EMN 的度数;

(3)如图,抛物线 y = - x 2 + 2 x + 3 x 轴交于 A B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 2 x 2 + 2 x 6 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 AC BC

(1)求 A B C 三点的坐标并直接写出直线 AC BC 的函数表达式.

(2)点 P 是直线 AC 下方抛物线上的一个动点,过点 P BC 的平行线 l ,交线段 AC 于点 D

①试探究:在直线 l 上是否存在点 E ,使得以点 D C B E 为顶点的四边形为菱形,若存在,求出点 E 的坐标,若不存在,请说明理由;

②设抛物线的对称轴与直线 l 交于点 M ,与直线 AC 交于点 N .当 S ΔDMN = S ΔAOC 时,请直接写出 DM 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 5 ( a 0 ) x 轴交于点 A ( - 5 , 0 ) ,点 B ( 1 , 0 ) (点 A 在点 B 的左边),与 y 轴交于点 C ,点 D 为抛物线的顶点,连接 BD .直线 y = - 1 2 x - 5 2 经过点 A ,且与 y 轴交于点 E

(1)求抛物线的解析式;

(2)点 N 是抛物线上的一点,当 ΔBDN 是以 DN 为腰的等腰三角形时,求点 N 的坐标;

(3)点 F 为线段 AE 上的一点,点 G 为线段 OA 上的一点,连接 FG ,并延长 FG 与线段 BD 交于点 H (点 H 在第一象限),当 EFG = 3 BAE HG = 2 FG 时,求出点 F 的坐标.

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 为正方形,点 A B x 轴上,抛物线 y = x 2 + bx + c 经过点 B D ( - 4 , 5 ) 两点,且与直线 DC 交于另一点 E

(1)求抛物线的解析式;

(2) F 为抛物线对称轴上一点, Q 为平面直角坐标系中的一点,是否存在以点 Q F E B 为顶点的四边形是以 BE 为边的菱形.若存在,请求出点 F 的坐标;若不存在,请说明理由;

(3) P y 轴上一点,过点 P 作抛物线对称轴的垂线,垂足为 M ,连接 ME BP ,探究 EM + MP + PB 是否存在最小值.若存在,请求出这个最小值及点 M 的坐标;若不存在,请说明理由.

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 2 b = c = - 2 ,求方程 a x 2 + bx + c = 0 的根的判别式的值;

(2)如图所示,该二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < 0 < x 2 ,与 y 轴的负半轴交于点 C ,点 D 在线段 OC 上,连接 AC BD ,满足 ACO = ABD - b a + c = x 1

①求证: ΔAOC ΔDOB

②连接 BC ,过点 D DE BC 于点 E ,点 F ( 0 , x 1 - x 2 ) y 轴的负半轴上,连接 AF ,且 ACO = CAF + CBD ,求 c x 1 的值.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象经过点 A ( 0 , - 7 4 ) ,点 B ( 1 , 1 4 )

(1)求此二次函数的解析式;

(2)当 - 2 x 2 时,求二次函数 y = x 2 + bx + c 的最大值和最小值;

(3)点 P 为此函数图象上任意一点,其横坐标为 m ,过点 P PQ / / x 轴,点 Q 的横坐标为 - 2 m + 1 .已知点 P 与点 Q 不重合,且线段 PQ 的长度随 m 的增大而减小.

①求 m 的取值范围;

②当 PQ 7 时,直接写出线段 PQ 与二次函数 y = x 2 + bx + c ( - 2 x < 1 3 ) 的图象交点个数及对应的 m 的取值范围.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A B C 三点.

(1)求证: ACB = 90 °

(2)点 D 是第一象限内该抛物线上的动点,过点 D x 轴的垂线交 BC 于点 E ,交 x 轴于点 F

①求 DE + BF 的最大值;

②点 G AC 的中点,若以点 C D E 为顶点的三角形与 ΔAOG 相似,求点 D 的坐标.

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.

(1)如图1,当 m > 0 n > 0 ,且 n = 3 m 时,

①求点 M 的坐标;

②若点 B ( 15 4 y ) 在该抛物线上,连接 OM BM C 是线段 BM 上一动点(点 C 与点 M B 不重合),过点 C CD / / MO ,交 x 轴于点 D ,线段 OD MC 是否相等?请说明理由;

(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 n > 0 ,且直线 EM x 轴的负半轴于点 F 时,过点 A x 轴的垂线,交直线 EM 于点 N G y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 AFG

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题试题