初中数学

如图1,在平面直角坐标系中,抛物线 y = - 1 3 x 2 + 2 3 3 x + 3 x 轴交于 A B 两点(点 A 在点 B 左侧),与 y 轴交于点 C ,抛物线的顶点为点 E

(1)判断 ΔABC 的形状,并说明理由;

(2)经过 B C 两点的直线交抛物线的对称轴于点 D ,点 P 为直线 BC 上方抛物线上的一动点,当 ΔPCD 的面积最大时, Q 从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点 M 处,再沿垂直于抛物线对称轴的方向运动到 y 轴上的点 N 处,最后沿适当的路径运动到点 A 处停止.当点 Q 的运动路径最短时,求点 N 的坐标及点 Q 经过的最短路径的长;

(3)如图2,平移抛物线,使抛物线的顶点 E 在射线 AE 上移动,点 E 平移后的对应点为点 E ' ,点 A 的对应点为点 A ' ,将 ΔAOC 绕点 O 顺时针旋转至△ A 1 O C 1 的位置,点 A C 的对应点分别为点 A 1 C 1 ,且点 A 1 恰好落在 AC 上,连接 C 1 A ' C 1 E ' ,△ A ' C 1 E ' 是否能为等腰三角形?若能,请求出所有符合条件的点 E ' 的坐标;若不能,请说明理由.

来源:2016年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图:在平面直角坐标系中,直线轴交于点,经过点的抛物线的对称轴是

(1)求抛物线的解析式;

(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点轴于点,若点在线段上,点在线段的延长线上,连接,且.求证:

(3)若(2)中的点坐标为,点轴上的点,点轴上的点,当时,抛物线上是否存在点,使四边形是矩形?如果存在,请求出点的坐标,如果不存在,请说明理由.

来源:2018年云南省曲靖市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,抛物线过点,对称轴是直线,且抛物线与轴的正半轴交于点

(1)求抛物线的解析式,并根据图象直接写出当时,自变量的取值范围;

(2)在第二象限内的抛物线上有一点,当时,求的面积.

来源:2018年云南省昆明市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为是这个二次函数图象上的点,是原点.

(1)不等式是否成立?请说明理由;

(2)设的面积,求满足的所有点的坐标.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点.

(1)求抛物线解析式;

(2)当点运动到什么位置时,的面积最大?

(3)过点轴的垂线,交线段于点,再过点轴交抛物线于点,连接,请问是否存在点使为等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

来源:2019年西藏中考数学试卷
  • 更新:2020-12-23
  • 题型:未知
  • 难度:未知

抛物线轴交于两点,与轴交于点,已知点的坐标为为抛物线第一象限上一点.

(1)求抛物线的解析式;

(2)如图1,连接,若,求的面积;

(3)如图2,连接,若,求点的坐标.

来源:2018年西藏中考数学试卷
  • 更新:2020-12-23
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,点的坐标为

(1)求抛物线的解析式;

(2)在抛物线的对称轴上找一点,使的值最小.并求出点坐标;

(3)在第二象限内的抛物线上,是否存在点,使得的面积是面积的一半?若存在,求出点的坐标,若不存在,请说明理由.

来源:2017年西藏中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知:如图,抛物线 y = a x 2 + 4 x + c 经过原点 O ( 0 , 0 ) 和点 A ( 3 , 3 ) P 为抛物线上的一个动点,过点 P x 轴的垂线,垂足为 B ( m , 0 ) ,并与直线 OA 交于点 C

(1)求抛物线的解析式;

(2)当点 P 在直线 OA 上方时,求线段 PC 的最大值;

(3)过点 A AD x 轴于点 D ,在抛物线上是否存在点 P ,使得以 P A C D 四点为顶点的四边形是平行四边形?若存在,求 m 的值;若不存在,请说明理由.

来源:2016年西藏中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知抛物线为常数,经过点,点轴正半轴上的动点.

(Ⅰ)当时,求抛物线的顶点坐标;

(Ⅱ)点在抛物线上,当时,求的值;

(Ⅲ)点在抛物线上,当的最小值为时,求的值.

来源:2019年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点,点.已知抛物线是常数),顶点为

(Ⅰ)当抛物线经过点时,求顶点的坐标;

(Ⅱ)若点轴下方,当时,求抛物线的解析式;

(Ⅲ)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.

来源:2018年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知抛物线是常数)经过点

(1)求该抛物线的解析式和顶点坐标;

(2)为抛物线上的一个动点,关于原点的对称点为

①当点落在该抛物线上时,求的值;

②当点落在第二象限内,取得最小值时,求的值.

来源:2017年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知抛物线 C : y = x 2 - 2 x + 1 的顶点为 P ,与 y 轴的交点为 Q ,点 F ( 1 , 1 2 )

(Ⅰ) 求点 P Q 的坐标;

(Ⅱ) 将抛物线 C 向上平移得到抛物线 C ' ,点 Q 平移后的对应点为 Q ' ,且 FQ ' = OQ '

①求抛物线 C ' 的解析式;

②若点 P 关于直线 Q ' F 的对称点为 K ,射线 FK 与抛物线 C ' 相交于点 A ,求点 A 的坐标 .

来源:2016年天津市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线经过点两点,与轴交于点,点是抛物线上一个动点,设点的横坐标为.连接

(1)求抛物线的函数表达式;

(2)的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2019年山西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线轴交于两点(点在点的左侧),与轴交于点,连接.点是第四象限内抛物线上的一个动点,点的横坐标为,过点轴,垂足为点于点,过点轴于点,交于点

(1)求三点的坐标;

(2)试探究在点运动的过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请直接写出此时点的坐标;若不存在,请说明理由;

(3)请用含的代数式表示线段的长,并求出为何值时有最大值.

来源:2018年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点(点在点的左侧),与轴交于点,连接.点沿以每秒1个单位长度的速度由点向点运动,同时,点沿以每秒2个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点轴,与抛物线交于点,与交于点,连接,与交于点.设点的运动时间为

(1)求直线的函数表达式;

(2)①直接写出两点的坐标(用含的代数式表示,结果需化简)

②在点运动的过程中,当时,求的值;

(3)试探究在点运动的过程中,是否存在某一时刻,使得点的中点?若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.

来源:2017年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题解答题