一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点.
(1)求,,的值;
(2)过点,且垂直于轴的直线与二次函数的图象相交于,两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.
在平面直角坐标系 中,抛物线 与 轴的交点为 , .
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当 时,求线段 上整点的个数;
②若抛物线在点 , 之间的部分与线段 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求 的取值范围.
设抛物线的解析式为 ,过点 作 轴的垂线,交抛物线于点 ;过点 , 作 轴的垂线,交抛物线于点 ; ;过点 , 为正整数)作 轴的垂线,交抛物线于点 ,连接 ,得 △ .
(1)求 的值;
(2)直接写出线段 , 的长(用含 的式子表示);
(3)在系列 △ 中,探究下列问题:
①当 为何值时, △ 是等腰直角三角形?
②设 , 均为正整数),问:是否存在 △ 与 △ 相似?若存在,求出其相似比;若不存在,说明理由.
如图,抛物线 (常数 与 轴从左到右的交点为 , ,过线段 的中点 作 轴,交双曲线 于点 ,且 ,
(1)求 值;
(2)当 时,求 的长,并求直线 与 对称轴之间的距离;
(3)把 在直线 左侧部分的图象(含与直线 的交点)记为 ,用 表示图象 最高点的坐标;
(4)设 与双曲线有个交点的横坐标为 ,且满足 ,通过 位置随 变化的过程,直接写出 的取值范围.
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.
(1)求b,c的值.
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值. 若不存在,请说明理由.
(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。
(1)当为等腰直角三角形时,求的值,
(2)当为等边三角形时,求的值,
(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?
(年云南省曲靖市)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.
(1)求抛物线的解析式;
(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;
(3)判断直线l与⊙P的位置关系,并说明理由.
(年贵州省遵义市)如图,抛物线(≠0)与轴交于A(-4,0),B(2,0),与轴交与点C(0,2).
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(解题用图见答题卡)
(3)以AB为直径作⊙M,直线经过点E(-1,-5),并且与⊙M相切,求该直线的解析式.(解题用图见答题卡)
(年贵州省贵阳市)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
(年贵州省黔东南州)如图,已知二次函数的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为.
(1)求二次函数的解析式及点B的坐标;
(2)由图象写出满足的自变量x的取值范围;
(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.
(年青海省中考)如图,二次函数的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.
(1)求该抛物线的解析式;
(2)判断△BCM的形状,并说明理由;
(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
(年新疆、生产建设兵团)如图,直线与x轴、y轴分别交于点A、B.抛物线经过A、B,并与x轴交于另一点C,其顶点为P,
(1)求a,k的值;
(2)在图中求一点Q,A.B、C为顶点的四边形是平行四边形,请直接写出相应的点Q的坐标;
(3)抛物线的对称轴上是否存在一点M,使△ABM的周长最小?若存在,求△ABM的周长;若不存在,请说明理由;
(4)抛物线的对称轴是上是否存在一点N,使△ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.
(年新疆乌鲁木齐市)抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.
(1)求点A,B,C的坐标;
(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;
②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
(年贵州省黔南州)如图,在平面直角坐标系xOy中,抛物线过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.
(1)求b、c的值;
(2)当t为何值时,点D落在抛物线上;
(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.
(年云南省)如图,在平面直角坐标系中,抛物线()与x轴相交于A,B两点,与y轴相交于点C,直线()经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.