如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值.(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值. 若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
解方程:2(x-3)=3x(x-3).
如图:抛物线y=-x2+bx+c交x轴于A、B,直线y=x+2过点A,交y轴于C,交抛物线于D,且D的纵坐标为5.(1)求抛物线解析式; (2)点P为抛物线在第一象限的图象上一点,直线PC交x轴于点E,若PC=3CE,求点P的坐标;(3)在(2)的条件下,点Q为x轴上一点,把△PCQ沿CQ翻折,点P刚好落在x轴上点G处,求Q点的坐标.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元并且不得低于50元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,库存少而获利最大?每个月最大的利润是多少元?
如图,CD是Rt△ABC斜边上的中线,DE⊥AB交BC于F,交AC的延长线于E.(1)求证:∠A=∠F;(2)△CDE与△FDC是否相似?并给予证明.