设抛物线的解析式为 y = a x 2 ,过点 B 1 ( 1 , 0 ) 作 x 轴的垂线,交抛物线于点 A 1 ( 1 , 2 ) ;过点 B 2 ( 1 2 , 0 ) 作 x 轴的垂线,交抛物线于点 A 2 ; … ;过点 B n ( ( 1 2 ) n - 1 , 0 ) ( n 为正整数)作 x 轴的垂线,交抛物线于点 A n ,连接 A n B n + 1 ,得 Rt △ A n B n B n + 1 .
(1)求 a 的值;
(2)直接写出线段 A n B n , B n B n + 1 的长(用含 n 的式子表示);
(3)在系列 Rt △ A n B n B n + 1 中,探究下列问题:
①当 n 为何值时, Rt △ A n B n B n + 1 是等腰直角三角形?
②设 1 ⩽ k < m ⩽ n ( k , m 均为正整数),问:是否存在 Rt △ A k B k B k + 1 与 Rt △ A m B m B m + 1 相似?若存在,求出其相似比;若不存在,说明理由.
已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.(1) 求证:BF∥AC;(2) 若AC边的中点为M,求证:;(3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图1 图2
已知关于x的一元二次方程的一个实数根为 2. (1) 用含p的代数式表示q; (2) 求证:抛物线与x轴有两个交点; (3) 设抛物线的顶点为M,与 y轴的交点为E,抛物线顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.
阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为 ;(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为 ,正六边形ABCDEF的边长为 .图1 图2 图3
如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1) 求点O到BD的距离及∠OBD的度数;(2) 若DE=2BE,求的值和CD的长.
如图,梯形ABCD中,AD∥BC,,BC=2,,.(1) 求∠BDC的度数; (2) 求AB的长.