设抛物线的解析式为 y = a x 2 ,过点 B 1 ( 1 , 0 ) 作 x 轴的垂线,交抛物线于点 A 1 ( 1 , 2 ) ;过点 B 2 ( 1 2 , 0 ) 作 x 轴的垂线,交抛物线于点 A 2 ; … ;过点 B n ( ( 1 2 ) n - 1 , 0 ) ( n 为正整数)作 x 轴的垂线,交抛物线于点 A n ,连接 A n B n + 1 ,得 Rt △ A n B n B n + 1 .
(1)求 a 的值;
(2)直接写出线段 A n B n , B n B n + 1 的长(用含 n 的式子表示);
(3)在系列 Rt △ A n B n B n + 1 中,探究下列问题:
①当 n 为何值时, Rt △ A n B n B n + 1 是等腰直角三角形?
②设 1 ⩽ k < m ⩽ n ( k , m 均为正整数),问:是否存在 Rt △ A k B k B k + 1 与 Rt △ A m B m B m + 1 相似?若存在,求出其相似比;若不存在,说明理由.
阅读下列材料: 我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+Bx+C=0的距离(d)计算公式是:d= . 例:求点P(1,2)到直线y= x-的距离d时,先将y= x-化为5x-12y-2=0,再由上述距离公式求得d= = . 解答下列问题: 如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2). (1)求点M到直线AB的距离. (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.
如图,已知菱形ABCD中,∠ABC=60°,点P是对称线AC上的一点,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°。求证:∠APE=∠CFP。
已知,点A、B、C在⊙O上,OC⊥AB,∠AOC=40°,点D⊙O上的动点(与点B、C不重合)是则∠BDC的度数是 。
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.如图,当点D在边CB的延长线上时,证明AC=CD﹣CF。
对非负实数x“四舍五入”到个位的值记为 即:当n为非负整数时,如果 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题: (1)填空:①= (为圆周率); ②如果的取值范围为 ; (2)①当; ②举例说明不恒成立; (3)求满足的值; (4)设n为常数,且为正整数,函数范围内取值时,函数值y为整数的个数记为的个数记为b.求证: