如图,梯形ABCD中,AD∥BC,,BC=2,,.(1) 求∠BDC的度数; (2) 求AB的长.
如图,已知□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,且△AOB的周长l=23,求AB的长.
(1)计算: (2)解方程:.
解方程(不等式组) (1) (2)
实践与探究: 对于任意正实数a、b,∵≥0, ∴≥0,∴≥ 只有当a=b时,等号成立。 结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值。根据上述内容,回答下列问题: (1)若m>0,只有当m=时,有最小值; 若m>0,只有当m=时,2有最小值. (2)如图,已知直线L1:与x轴交于点A,过点A的另一直线L2与双曲线相交于点B(2,m),求直线L2的解析式. (3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1 于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.
如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当时,一次函数值大于反比例函数值,当时,一次函数值小于反比例函数值. (1)求一次函数的解析式; (2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.