在平面直角坐标系 xOy 中,抛物线 y = m x 2 - 2 mx + m - 1 ( m > 0 ) 与 x 轴的交点为 A , B .
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当 m = 1 时,求线段 AB 上整点的个数;
②若抛物线在点 A , B 之间的部分与线段 AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求 m 的取值范围.
求证:圆的内接四边形对角互补.
解方程:x2-x-6=0
如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=
已知二次函数y=x2-2mx+m2-1. (1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标; (3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC. (1)求证:MN是半圆的切线. (2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.