如图,已知抛物线 经过 , 两点,与 轴的另一个交点为 ,顶点为 ,连接 .
(1)求该抛物线的表达式;
(2)点 为该抛物线上一动点(与点 、 不重合),设点 的横坐标为 .
①当点 在直线 的下方运动时,求 的面积的最大值;
②该抛物线上是否存在点 ,使得 ?若存在,求出所有点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,其对称轴交抛物线于点 ,交 轴于点 ,已知 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 为抛物线上一动点,当 时,求点 的坐标;
(3)平行于 轴的直线交抛物线于 、 两点,以线段 为对角线作菱形 ,当点 在 轴上,且 时,求菱形对角线 的长.
抛物线 经过点 和点 .
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 相交于 、 两点,点 是抛物线上的动点且位于 轴下方,直线 轴,分别与 轴和直线 交于点 、 .
①连接 、 ,如图1,在点 运动过程中, 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连接 ,过点 作 ,垂足为点 ,如图2,是否存在点 ,使得 与 相似?若存在,求出满足条件的点 的坐标;若不存在,说明理由.
如图1,在平面直角坐标系 中,已知点 和点 的坐标分别为 , ,将 绕点 按顺时针方向分别旋转 , 得到 △ , .抛物线 经过点 , , ;抛物线 经过点 , , .
(1)点 的坐标为 ,点 的坐标为 ;抛物线 的解析式为 .抛物线 的解析式为 ;
(2)如果点 是直线 上方抛物线 上的一个动点.
①若 时,求 点的坐标;
②如图2,过点 作 轴的垂线交直线 于点 ,交抛物线 于点 ,记 ,求 与 的函数关系式,当 时,求 的取值范围.
抛物线 与 轴交于 , ,与 轴交于 .
(1)若 ,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交 轴于 ,在对称轴左侧的抛物线上有一点 ,使 ,求点 的坐标;
(3)如图2,设 , 轴于 ,在线段 上是否存在点 ,使 ?若存在,求 的取值范围;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 , .
(1)求抛物线的解析式;
(2)点 是线段 上任意一点,过 作直线 轴于点 ,交抛物线于点 ,求线段 的最大值;
(3)点 是抛物线上任意一点,连接 ,以 为边作正方形 ,是否存在点 使点 恰好落在对称轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1,对称轴为直线 的抛物线经过 、 两点,抛物线与 轴的另一交点为
(1)求抛物线的解析式;
(2)若点 为第一象限内抛物线上的一点,设四边形 的面积为 ,求 的最大值;
(3)如图2,若 是线段 上一动点,在 轴是否存在这样的点 ,使 为等腰三角形且 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由.
已知抛物线 经过点 , 、 与 轴交于另一点 ,连接 .
(1)求抛物线的解析式;
(2)如图, 是第一象限内抛物线上一点,且 ,求证: ;
(3)在抛物线上是否存在点 ,直线 交 轴于点 ,使 与以 , , , 中的三点为顶点的三角形相似(不重合)?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 过点 , ,过定点 的直线 与抛物线交于 、 两点,点 在点 的右侧,过点 作 轴的垂线,垂足为 .
(1)求抛物线的解析式;
(2)当点 在抛物线上运动时,判断线段 与 的数量关系 、 、 ,并证明你的判断;
(3) 为 轴上一点,以 、 、 、 为顶点的四边形是菱形,设点 ,求自然数 的值;
(4)若 ,在直线 下方的抛物线上是否存在点 ,使得 的面积最大?若存在,求出点 的坐标及 的最大面积;若不存在,请说明理由.
如图,二次函数 的图象与 轴交于点 , ,与 轴交于点 ,抛物线的顶点为 ,其对称轴与线段 交于点 ,垂直于 轴的动直线 分别交抛物线和线段 于点 和点 ,动直线 在抛物线的对称轴的右侧(不含对称轴)沿 轴正方向移动到 点.
(1)求出二次函数 和 所在直线的表达式;
(2)在动直线 移动的过程中,试求使四边形 为平行四边形的点 的坐标;
(3)连接 , ,在动直线 移动的过程中,抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?如果存在,求出点 的坐标;如果不存在,请说明理由.
直线 交 轴于点 ,交 轴于点 ,顶点为 的抛物线 经过点 ,交 轴于另一点 ,连接 , , ,如图所示.
(1)直接写出抛物线的解析式和点 , , 的坐标;
(2)动点 在 上以每秒2个单位长的速度由点 向点 运动,同时动点 在 上以每秒3个单位长的速度由点 向点 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 秒. 交线段 于点 .
①当 时,求 的值;
②过点 作 ,垂足为点 ,过点 作 交线段 或 于点 ,当 时,求 的值.
如图,抛物线 与 轴交于原点及点 ,且经过点 ,对称轴为直线 .
(1)求抛物线的解析式;
(2)设直线 与抛物线两交点的横坐标分别为 , ,当 时,求 的值;
(3)连接 ,点 为 轴下方抛物线上一动点,过点 作 的平行线交直线 于点 ,当 时,求出点 的坐标.
(坐标平面内两点 , , , 之间的距离
如图,已知抛物线 的对称轴为直线 ,且抛物线经过 , 两点,与 轴交于点 .
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
如图1,已知平行四边形 顶点 的坐标为 ,点 在 轴上,且 轴,过 , , 三点的抛物线 的顶点坐标为 ,点 是线段 上一动点,直线 交 于点 .
(1)求抛物线的表达式;
(2)设四边形 的面积为 ,请求出 与 的函数关系式,并写出自变量 的取值范围;
(3)如图2,过点 作 轴,垂足为 ,交直线 于 ,过点 作 轴,垂足为 ,连接 ,直线 分别交 轴, 轴于点 , ,试求线段 的最小值,并直接写出此时 的值.