如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,与抛物线的对称轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 是对称轴左侧抛物线上的一个动点,点 在射线 上,若以点 、 、 为顶点的三角形与 相似,请直接写出点 的坐标.
在平面直角坐标系 中,点 和点 在抛物线 上.
(1)若 , ,求该抛物线的对称轴;
(2)已知点 , , 在该抛物线上.若 ,比较 , , 的大小,并说明理由.
已知抛物线 经过点 和 .
(1)求 、 的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
已知函数(为常数).
(1)证明:无论m取何值,该函数与轴总有两个交点;
(2)设函数的两交点的横坐标分别为和,且,求此函数的解析式.
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于E.
(1)求此抛物线的表达式.
(2)若直线y=x+1与抛物线交于A,D两点,与y轴交于点F,连接DE,求△DEF的面积.
在平面直角坐标系中,已知点 , , ,直线 经过点 ,抛物线 恰好经过 , , 三点中的两点.
(1)判断点 是否在直线 上,并说明理由;
(2)求 , 的值;
(3)平移抛物线 ,使其顶点仍在直线 上,求平移后所得抛物线与 轴交点纵坐标的最大值.
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.
如图,在平面直角坐标系中,已知二次函数 图象的顶点为 ,与 轴交于点 ,异于顶点 的点 在该函数图象上.
(1)当 时,求 的值.
(2)当 时,若点 在第一象限内,结合图象,求当 时,自变量 的取值范围.
(3)作直线 与 轴相交于点 .当点 在 轴上方,且在线段 上时,求 的取值范围.
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,抛物线 的图象经过点 ,交 轴于点 、 (点 在点 左侧),连接 ,直线 与 轴交于点 ,与 上方的抛物线交于点 ,与 交于点 .
(1)求抛物线的解析式及点 、 的坐标;
(2) 是否存在最大值?若存在,请求出其最大值及此时点 的坐标;若不存在,请说明理由.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
如图,在平面直角坐标系中,抛物线 与 轴交于点 ,与x轴交于 两点(点 在点 的左侧),且 点坐标为 ,直线 的解析式为 .
(1)求抛物线的解析式;
(2)过点 作 ,交抛物线于点D,点E为直线 上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线 向左平移 个单位,已知点 为抛物线 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 的面积最大时,是否存在以 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
如图,抛物线 经过点 和 ,与两坐标轴的交点分别为 , , ,它的对称轴为直线 .
(1)求该抛物线的表达式;
(2) 是该抛物线上的点,过点 作 的垂线,垂足为 , 是 上的点.要使以 、 、 为顶点的三角形与 全等,求满足条件的点 ,点 的坐标.