在平面直角坐标系 xOy 中,点 ( 1 , m ) 和点 ( 3 , n ) 在抛物线 y = a x 2 + bx ( a > 0 ) 上.
(1)若 m = 3 , n = 15 ,求该抛物线的对称轴;
(2)已知点 ( - 1 , y 1 ) , ( 2 , y 2 ) , ( 4 , y 3 ) 在该抛物线上.若 mn < 0 ,比较 y 1 , y 2 , y 3 的大小,并说明理由.
解方程:(1)(用配方法)(2)
CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件__________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.甲、乙两队单独完成此项任务需要多少天?
如图,在平行四边形ABCD中,AB<BC. (1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹); (2)若BC=8,CD=5,则CE= .
如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.试判断△BMN的形状,并说明理由.