已知抛物线 y = a ( x - 1 ) 2 + h 经过点 ( 0 , - 3 ) 和 ( 3 , 0 ) .
(1)求 a 、 h 的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元. (1)求每台A型电脑和B型电脑的销售利润; (2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元. ①求y关于x的函数关系式; ②该商店购进A型、B型电脑各多少台,才能使销售总利润最大? (3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2). (1)求直线AB的解析式; (2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.
已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E. (1)求证:△AOD≌△EOC; (2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.
如图,在直角坐标系中,A(0,4)、C(3,0). (1)①画出线段AC关于y轴对称线段AB; ②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD. (2)若直线平分(1)中四边形ABCD的面积,请直接写出实数k的值.
如图,在正方形ABCD中,对角线AC、BD相交于O,E、F分别在OD、OC上,且DE=CF,连结DF、AE,AE的延长线交于DF于点M,求证:AM⊥DF.