在平面直角坐标系 中,抛物线 过 , 两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为 ,求 的面积;
(3)若直线 向上平移 个单位所得的直线与抛物线段 (包括端点 、 部分有两个交点,求 的取值范围.
如图,二次函数 的图象与 轴交于 、 两点,与 轴交于点 , .点 在函数图象上, 轴,且 ,直线 是抛物线的对称轴, 是抛物线的顶点.
(1)求 、 的值;
(2)如图①,连接 ,线段 上的点 关于直线 的对称点 恰好在线段 上,求点 的坐标;
(3)如图②,动点 在线段 上,过点 作 轴的垂线分别与 交于点 ,与抛物线交于点 .试问:抛物线上是否存在点 ,使得 与 的面积相等,且线段 的长度最小?如果存在,求出点 的坐标;如果不存在,说明理由.
如图1(注:与图2完全相同),二次函数 的图象与 轴交于 , 两点,与 轴交于点 .
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为 ,求 的面积(请在图1中探索);
(3)若点 , 同时从 点出发,都以每秒1个单位长度的速度分别沿 , 边运动,其中一点到达端点时,另一点也随之停止运动,当 , 运动到 秒时, 沿 所在的直线翻折,点 恰好落在抛物线上 点处,请直接判定此时四边形 的形状,并求出 点坐标(请在图2中探索).
如图,在平面直角坐标系中,抛物线 经过 , , 三点.
(1)求抛物线的解析式及顶点 的坐标;
(2)将(1)中的抛物线向下平移 个单位长度,再向左平移 个单位长度,得到新抛物线.若新抛物线的顶点 在 内,求 的取值范围;
(3)点 为线段 上一动点(点 不与点 , 重合),过点 作 轴的垂线交(1)中的抛物线于点 ,当 与 相似时,求 的面积.
在平面直角坐标系中,平行四边形 如图放置,点 、 的坐标分别是 、 ,将此平行四边形绕点 顺时针旋转 ,得到平行四边形 .
(1)若抛物线经过点 、 、 ,求此抛物线的解析式;
(2)在(1)的情况下,点 是第一象限内抛物线上的一动点,问:当点 在何处时, 的面积最大?最大面积是多少?并求出此时 的坐标;
(3)在(1)的情况下,若 为抛物线上一动点, 为 轴上的一动点,点 坐标为 ,当 、 、 、 构成平行四边形时,求点 的坐标,当这个平行四边形为矩形时,求点 的坐标.
抛物线 经过点 ,与它的对称轴直线 交于点 .
(1)直接写出抛物线 的解析式;
(2)如图1,过定点的直线 与抛物线 交于点 、 .若 的面积等于1,求 的值;
(3)如图2,将抛物线 向上平移 个单位长度得到抛物线 ,抛物线 与 轴交于点 ,过点 作 轴的垂线交抛物线 于另一点 . 为抛物线 的对称轴与 轴的交点, 为线段 上一点.若 与 相似,并且符合条件的点 恰有2个,求 的值及相应点 的坐标.
如图,已知抛物线 经过 , 两点,与 轴的另一个交点为 ,顶点为 ,连接 .
(1)求该抛物线的表达式;
(2)点 为该抛物线上一动点(与点 、 不重合),设点 的横坐标为 .
①当点 在直线 的下方运动时,求 的面积的最大值;
②该抛物线上是否存在点 ,使得 ?若存在,求出所有点 的坐标;若不存在,请说明理由.
如图1,二次函数 的图象过点 ,顶点 的横坐标为1.
(1)求这个二次函数的表达式;
(2)点 在该二次函数的图象上,点 在 轴上,若以 、 、 、 为顶点的四边形是平行四边形,求点 的坐标;
(3)如图3,一次函数 的图象与该二次函数的图象交于 、 两点,点 为该二次函数图象上位于直线 下方的动点,过点 作直线 ,垂足为点 ,且 在线段 上(不与 、 重合),过点 作直线 轴交 于点 .若在点 运动的过程中, 为常数,试确定 的值.
如图,已知直线 与抛物线 相交于 , 两点,抛物线 交 轴于点 ,交 轴正半轴于 点,抛物线的顶点为 .
(1)求抛物线的解析式及点 的坐标;
(2)设点 为直线 下方的抛物线上一动点,当 的面积最大时,求此时 的面积及点 的坐标;
(3)点 为 轴上一动点,点 是抛物线上一点,当 (点 与点 对应),求 点坐标.
在平面直角坐标系 中,抛物线 经过点 , .
(1)求抛物线的解析式;
(2)点 是抛物线与 轴的交点,连接 ,设点 是抛物线上在第一象限内的点, ,垂足为点 .
①是否存在点 ,使线段 的长度最大?若存在,请求出点 的坐标;若不存在,请说明理由;
②当 与 相似时,求点 的坐标.
已知, , 是一元二次方程 的两个实数根,且 ,抛物线 的图象经过点 , ,如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与 轴的另一个交点为 ,抛物线的顶点为 ,试求出点 , 的坐标,并判断 的形状;
(3)点 是直线 上的一个动点(点 不与点 和点 重合),过点 作 轴的垂线,交抛物线于点 ,点 在直线 上,距离点 为 个单位长度,设点 的横坐标为 , 的面积为 ,求出 与 之间的函数关系式.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线与 轴的公共点坐标为 ,求 、 满足的关系式;
(2)设 为抛物线上的一定点,直线 与抛物线交于点 、 ,直线 垂直于直线 ,垂足为点 .当 时,直线 与抛物线的一个交点在 轴上,且 为等腰直角三角形.
①求点 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 ,都有 、 、 三点共线.
如图,抛物线 与直线 相交于 , 两点,且抛物线经过点 .
(1)求抛物线的解析式;
(2)点 是抛物线上的一个动点(不与点 、点 重合),过点 作直线 轴于点 ,交直线 于点 .
①当 时,求 点坐标;
②是否存在点 使 为等腰三角形?若存在请直接写出点 的坐标;若不存在,请说明理由.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线与 轴的公共点坐标为 ,求 、 满足的关系式;
(2)设 为抛物线上的一定点,直线 与抛物线交于点 、 ,直线 垂直于直线 ,垂足为点 .当 时,直线 与抛物线的一个交点在 轴上,且 为等腰直角三角形.
①求点 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 ,都有 、 、 三点共线.