在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A 、 C 的坐标分别是 ( 0 , 4 ) 、 ( - 1 , 0 ) ,将此平行四边形绕点 O 顺时针旋转 90 ° ,得到平行四边形 A ' B ' OC ' .
(1)若抛物线经过点 C 、 A 、 A ' ,求此抛物线的解析式;
(2)在(1)的情况下,点 M 是第一象限内抛物线上的一动点,问:当点 M 在何处时, ΔAMA ' 的面积最大?最大面积是多少?并求出此时 M 的坐标;
(3)在(1)的情况下,若 P 为抛物线上一动点, N 为 x 轴上的一动点,点 Q 坐标为 ( 1 , 0 ) ,当 P 、 N 、 B 、 Q 构成平行四边形时,求点 P 的坐标,当这个平行四边形为矩形时,求点 N 的坐标.
解下列方程(每小题5分,共10分)(1) (2)
解方程(A类4分) (B类5分)(C类6分)
先化简,再求值:
.计算:.
计算:.