如图,在平面直角坐标系中,抛物线 y = a x 2 + 2 ax + c 交 x 轴于 A , B 两点,交 y 轴于点 C ( 0 , 3 ) , tan ∠ OAC = 3 4 .
(1)求抛物线的解析式;
(2)点 H 是线段 AC 上任意一点,过 H 作直线 HN ⊥ x 轴于点 N ,交抛物线于点 P ,求线段 PH 的最大值;
(3)点 M 是抛物线上任意一点,连接 CM ,以 CM 为边作正方形 CMEF ,是否存在点 M 使点 E 恰好落在对称轴上?若存在,请求出点 M 的坐标;若不存在,请说明理由.
列方程或方程组解应用题: 周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.
计算:.
已知关于的方程有两个实数根. (1)求实数的取值范围; (2)若a为正整数,求方程的根.
已知:如图,在矩形ABCD中,E是BC边上一点,DE平分,EF∥DC交AD边于点F,连结BD. (1)求证:四边形FECD是正方形; (2)若求的值.