已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) .
(1)若点 ( - 2 , 0 ) 也在该抛物线上,求 a , b 满足的关系式;
(2)若该抛物线上任意不同两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为心, OA 为半径的圆与拋物线的另两个交点为 B , C ,且 ΔABC 有一个内角为 60 ° .
①求抛物线的解析式;
②若点 P 与点 O 关于点 A 对称,且 O , M , N 三点共线,求证: PA 平分 ∠ MPN .
计算:.
(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2; (2)(﹣2)2+3×(﹣2)﹣1÷()2.
三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)
解方程:(x+3)2﹣x(x+3)=0.