如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
如图,抛物线过点 和 ,顶点为 ,直线 与抛物线的对称轴 的交点为 , ,平行于 轴的直线 与抛物线交于点 ,与直线 交于点 ,点 的横坐标为 ,四边形 为平行四边形.
(1)求点 的坐标及抛物线的解析式;
(2)若点 为抛物线上的动点,且在直线 上方,当 面积最大时,求点 的坐标及 面积的最大值;
(3)在抛物线的对称轴上取一点 ,同时在抛物线上取一点 ,使以 为一边且以 , , , 为顶点的四边形为平行四边形,求点 和点 的坐标.
在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如 与 是一对“互换点”.
(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
(2) 、 是一对“互换点”,若点 的坐标为 ,求直线 的表达式(用含 、 的代数式表示);
(3)在抛物线 的图象上有一对“互换点” 、 ,其中点 在反比例函数 的图象上,直线 经过点 , ,求此抛物线的表达式.
下表中 与 的数据满足我们初中学过的某种函数关系.其函数表达式为 .
|
|
|
0 |
1 |
3 |
|
|
|
0 |
3 |
4 |
0 |
|
已知抛物线的解析式为 .
(1)当自变量 时,函数值 随 的增大而减少,求 的取值范围;
(2)如图,若抛物线的图象经过点 ,与 轴交于点 ,抛物线的对称轴与 轴交于 .
①求抛物线的解析式;
②在抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
已知二次函数 的图象与 轴交于 、 两点, 在 左侧,且 ,与 轴交于点 .
(1)求 点坐标,并判断 的正负性;
(2)设这个二次函数的图象的对称轴与直线 相交于点 ,已知 ,直线 与 轴交于点 ,连接 .
①若 的面积为8,求二次函数的解析式;
②若 为锐角三角形,请直接写出 的取值范围.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,且 , ,直线 与 轴交于点 ,点 是抛物线 上的一动点,过点 作 轴,垂足为 ,交直线 于点 .
(1)试求该抛物线表达式;
(2)如图(1),当点 在第三象限,四边形 是平行四边形,求 点的坐标;
(3)如图(2),过点 作 轴,垂足为 ,连接 .
①求证: 是直角三角形;
②试问当 点横坐标为何值时,使得以点 、 、 为顶点的三角形与 相似?
如图,抛物线 经过点 和 ,与两坐标轴的交点分别为 , , ,它的对称轴为直线 .
(1)求该抛物线的表达式;
(2) 是该抛物线上的点,过点 作 的垂线,垂足为 , 是 上的点.要使以 、 、 为顶点的三角形与 全等,求满足条件的点 ,点 的坐标.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
在"探索函数 的系数 , , 与图象的关系"活动中,老师给出了直角坐标系中的四个点: , , , .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中 的值最大为
A. |
|
B. |
|
C. |
|
D. |
|
已知,在平面直角坐标系中,抛物线 的顶点为 .点 的坐标为 .
(1)求抛物线过点 时顶点 的坐标;
(2)点 的坐标记为 ,求 与 的函数表达式;
(3)已知 点的坐标为 ,当 取何值时,抛物线 与线段 只有一个交点.
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.