在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如 ( − 3 , 5 ) 与 ( 5 , − 3 ) 是一对“互换点”.
(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
(2) M 、 N 是一对“互换点”,若点 M 的坐标为 ( m , n ) ,求直线 MN 的表达式(用含 m 、 n 的代数式表示);
(3)在抛物线 y = x 2 + bx + c 的图象上有一对“互换点” A 、 B ,其中点 A 在反比例函数 y = − 2 x 的图象上,直线 AB 经过点 P ( 1 2 , 1 2 ) ,求此抛物线的表达式.
已知关于x的方程的解是正数,求m的取值范围.
如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格格点上. (1)作出△ABC关于y轴对称的△A’B’C’; (2)若点D在图中所给的网格中的格点上,且以A、B、D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.
若=30,xy=6,求下列代数式的值:(1);(2)x-y.
已知a=,求代数式的值.
解分式方程: