列方程或方程组解应用题:A、B两地相距15千米,甲从A地出发步行前往B地,15分钟后,乙从B地出发骑车前往A地,且乙骑车的速度是甲步行速度的3倍.乙到达A地后停留45分钟,然后骑车按原路原速返回,结果甲、乙二人同时到达B地.求甲步行的速度.
如图,设 P 为等腰直角三角形 ACB 斜边 AB 上任意一点, PE ⊥ AC 于点 E , PF ⊥ BC 于点 F , PG ⊥ EF 于 G 点, EF 交 CP 于点 H ,延长 GP 并在其延长线上取一点 D ,使得 PD = PC .求证: BC ⊥ BD ,且 BC = BD .
在 Rt △ ABC 中, ∠ BAC = 90 ∘ , AC = 2 AB ,点 D , P 分别是 AC , BC 的中点, △ ADE 是等腰三角形, ∠ AED = 90 ∘ ,连接 BE , EC .
(1)判断线段 BE 和 EC 的关系,并证明你的结论;
(2)连接 PA , PE ,过点 A 作 AM / / PE ,过点 E 作 EM / / PA , AM 和 EM 相交于点 M ,在图中先补充图形,再判断四边形 PAME 的形状,并证明你的结论.
已知,如图,在菱形 ABCD 中, F 为边 BC 的中点, DF 与对角线 AC 交于点 M ,过 M 作 ME ⊥ CD 于点 E , ∠ 1 = ∠ 2 .
(1)若 CE = 1 ,求 BC 的长;
(2)求证: AM = DF + MF .
现有一张矩形纸片 ABCD (如图)。其中 AB = 4 cm , BC = 6 cm ,点 E 是 BC 的中点,将纸片沿直线 AE 折叠,点 B 落在四边形 AECD 内,记为点 B ' ,求线段 B ' C 的长.
已知 a 4 + b 4 + c 4 + d 4 = 4 abcd ,判定以 a , b , c , d 为边的四边形的形状.