如图,在平面直角坐标系中,已知抛物线 的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线 经过M,N两点.
(1)结合图象,直接写出不等式 的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.
如图,在平面直角坐标系中,抛物线的顶点为 A(1,﹣4),且与 x轴交于 B、 C两点,点 B的坐标为(3,0).
(1)写出 C点的坐标,并求出抛物线的解析式;
(2)观察图象直接写出函数值为正数时,自变量的取值范围.
已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.
如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
如图,已知点,,,抛物线与直线交于点.
(1)当抛物线经过点时,求它的表达式;
(2)设点的纵坐标为,求的最小值,此时抛物线上有两点,,,,且,比较与的大小;
(3)当抛物线与线段有公共点时,直接写出的取值范围.
已知,抛物线经过点,
(1)求抛物线的解析式;
(2)如图1,抛物线上存在点,使得是以为直角边的直角三角形,请直接写出所有符合条件的点的坐标: .
(3)如图2,直线经过点,且平行与轴,若点为抛物线上任意一点(原点除外),直线交于点,过点作,交抛物线于点,求证:直线一定经过点.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,点 是抛物线上在第一象限内的一点,直线 与 轴相交于点 .
(1)求抛物线 的解析式;
(2)当点 是线段 的中点时,求点 的坐标;
(3)在(2)的条件下,求 的值.
如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.
如图,在直角坐标系中,直线 y= kx+1( k≠0)与双曲线 相交于点 P(1, m).
(1)求 k的值;
(2)若点 Q与点 P关于直线 y= x成轴对称,则点 Q的坐标是 Q( );
(3)若过 P、 Q二点的抛物线与 y轴的交点为 ,求该抛物线的函数解析式,并求出抛物线的对称轴方程.
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线 ,当直线 与抛物线有唯一公共点 时,求此时点 的坐标;
(3)过(2)中的点 作 轴,交 轴于点 .若点 是抛物线上一个动点,点 是 轴上一个动点,是否存在以 , , 三点为顶点的直角三角形(其中 为直角顶点)与 相似?如果存在,请直接写出满足条件的点 的个数和其中一个符合条件的点 的坐标;如果不存在,请说明理由.
如图,在平面直角坐标系中, 的顶点 是坐标原点,点 的坐标为 ,点 的坐标为 ,动点 从 开始以每秒1个单位长度的速度沿 轴正方向运动,设运动的时间为 秒 ,过点 作 轴,分别交 , 于点 , .
(1)填空: 的长为 , 的长为 ;
(2)当 时,求点 的坐标;
(3)请直接写出 的长为 (用含 的代数式表示);
(4)点 是线段 上一动点(点 不与点 , 重合), 和 的面积分别表示为 和 ,当 时,请直接写出 (即 与 的积)的最大值为 .
如图,二次函数 的图象与 轴正半轴交于点 ,平行于 轴的直线 与该抛物线交于 、 两点(点 位于点 左侧),与抛物线对称轴交于点 .
(1)求 的值;
(2)设 、 是 轴上的点(点 位于点 左侧),四边形 为平行四边形.过点 、 分别作 轴的垂线,与抛物线交于点 , 、 , .若 ,求 、 的值.
已知抛物线 经过 , , 三点,对称轴是直线 .关于 的方程 有两个相等的实数根.
(1)求抛物线的解析式;
(2)若 ,试比较 与 的大小;
(3)若 , 两点在直线 的两侧,且 ,求 的取值范围.
如图,在平面直角坐标系中,反比例函数的图象经过点,点在轴的负半轴上,交轴于点,为线段的中点.
(1) ,点的坐标为 ;
(2)若点为线段上的一个动点,过点作轴,交反比例函数图象于点,求面积的最大值.
我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.
(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.
① ;
② ;
③ .
(2)若点与点是关于的“函数” 的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值或取值范围.
(3)若关于的“函数” ,,是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.