初中数学

如图,直线 y = - 3 4 x + 3 x 轴交于点 A ,与 y 轴交于点 B .抛物线 y = - 3 8 x 2 + bx + c 经过 A B 两点,与 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)点 P 是第一象限抛物线上的点,连接 OP 交直线 AB 于点 Q .设点 P 的横坐标为 m PQ OQ 的比值为 y ,求 y m 的函数关系式,并求出 PQ OQ 的比值的最大值;

(3)点 D 是抛物线对称轴上的一动点,连接 OD CD ,设 ΔODC 外接圆的圆心为 M ,当 sin ODC 的值最大时,求点 M 的坐标.

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知抛物线 y = a ( x - 1 ) 2 过点 ( 3 , 1 ) D 为抛物线的顶点.

(1)求抛物线的解析式;

(2)若点 B C 均在抛物线上,其中点 B ( 0 , 1 4 ) ,且 BDC = 90 ° ,求点 C 的坐标;

(3)如图,直线 y = kx + 4 - k 与抛物线交于 P Q 两点.

①求证: PDQ = 90 °

②求 ΔPDQ 面积的最小值.

来源:2018年湖北省黄石市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 是以 AB 为直径的 M 的内接四边形,点 A B x 轴上, ΔMBC 是边长为2的等边三角形,过点 M 作直线 l x 轴垂直,交 M 于点 E ,垂足为点 M ,且点 D 平分 AC ̂

(1)求过 A B E 三点的抛物线的解析式;

(2)求证:四边形 AMCD 是菱形;

(3)请问在抛物线上是否存在一点 P ,使得 ΔABP 的面积等于定值5?若存在,请求出所有的点 P 的坐标;若不存在,请说明理由.

来源:2016年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 5 经过 A ( - 5 , 0 ) B ( - 4 , - 3 ) 两点,与 x 轴的另一个交点为 C ,顶点为 D ,连接 CD

(1)求该抛物线的表达式;

(2)点 P 为该抛物线上一动点(与点 B C 不重合),设点 P 的横坐标为 t

①当点 P 在直线 BC 的下方运动时,求 ΔPBC 的面积的最大值;

②该抛物线上是否存在点 P ,使得 PBC = BCD ?若存在,求出所有点 P 的坐标;若不存在,请说明理由.

来源:2019年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 x 轴于点 A ( - 1 , 0 ) 和点 B ( 3 , 0 )

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与 y 轴交于点 C ,顶点为 F ,点 D ( 2 , 3 ) 在该抛物线上.

①求四边形 ACFD 的面积;

②点 P 是线段 AB 上的动点(点 P 不与点 A B 重合),过点 P PQ x 轴交该抛物线于点 Q ,连接 AQ DQ ,当 ΔAQD 是直角三角形时,求出所有满足条件的点 Q 的坐标.

来源:2018年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + c 过点 ( - 2 , 2 ) ( 4 , 5 ) ,过定点 F ( 0 , 2 ) 的直线 l : y = kx + 2 与抛物线交于 A B 两点,点 B 在点 A 的右侧,过点 B x 轴的垂线,垂足为 C

(1)求抛物线的解析式;

(2)当点 B 在抛物线上运动时,判断线段 BF BC 的数量关系 ( > < = ) ,并证明你的判断;

(3) P y 轴上一点,以 B C F P 为顶点的四边形是菱形,设点 P ( 0 , m ) ,求自然数 m 的值;

(4)若 k = 1 ,在直线 l 下方的抛物线上是否存在点 Q ,使得 ΔQBF 的面积最大?若存在,求出点 Q 的坐标及 ΔQBF 的最大面积;若不存在,请说明理由.

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 5 , 0 )

(1)求该抛物线所对应的函数解析式;

(2)该抛物线与直线 y = 3 5 x + 3 相交于 C D 两点,点 P 是抛物线上的动点且位于 x 轴下方,直线 PM / / y 轴,分别与 x 轴和直线 CD 交于点 M N

①连接 PC PD ,如图1,在点 P 运动过程中, ΔPCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

②连接 PB ,过点 C CQ PM ,垂足为点 Q ,如图2,是否存在点 P ,使得 ΔCNQ ΔPBM 相似?若存在,求出满足条件的点 P 的坐标;若不存在,说明理由.

来源:2017年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 - 6 x + c x 轴交于点 A ( - 5 , 0 ) B ( - 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 5 ) ,点 P 是抛物线上的动点,连接 PA PC PC x 轴交于点 D

(1)求该抛物线所对应的函数解析式;

(2)若点 P 的坐标为 ( - 2 , 3 ) ,请求出此时 ΔAPC 的面积;

(3)过点 P y 轴的平行线交 x 轴于点 H ,交直线 AC 于点 E ,如图2.

①若 APE = CPE ,求证: AE EC = 3 7

ΔAPE 能否为等腰三角形?若能,请求出此时点 P 的坐标;若不能,请说明理由.

来源:2016年海南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + 2 ax + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 3 ) tan OAC = 3 4

(1)求抛物线的解析式;

(2)点 H 是线段 AC 上任意一点,过 H 作直线 HN x 轴于点 N ,交抛物线于点 P ,求线段 PH 的最大值;

(3)点 M 是抛物线上任意一点,连接 CM ,以 CM 为边作正方形 CMEF ,是否存在点 M 使点 E 恰好落在对称轴上?若存在,请求出点 M 的坐标;若不存在,请说明理由.

来源:2016年云南省曲靖市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图所示,二次函数 y = k ( x - 1 ) 2 + 2 的图象与一次函数 y = kx - k + 2 的图象交于 A B 两点,点 B 在点 A 的右侧,直线 AB 分别与 x y 轴交于 C D 两点,其中 k < 0

(1)求 A B 两点的横坐标;

(2)若 ΔOAB 是以 OA 为腰的等腰三角形,求 k 的值;

(3)二次函数图象的对称轴与 x 轴交于点 E ,是否存在实数 k ,使得 ODC = 2 BEC ,若存在,求出 k 的值;若不存在,说明理由.

来源:2019年江苏省盐城市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,对称轴为直线 x = 1 2 的抛物线经过 B ( 2 , 0 ) C ( 0 , 4 ) 两点,抛物线与 x 轴的另一交点为 A

(1)求抛物线的解析式;

(2)若点 P 为第一象限内抛物线上的一点,设四边形 COBP 的面积为 S ,求 S 的最大值;

(3)如图2,若 M 是线段 BC 上一动点,在 x 轴是否存在这样的点 Q ,使 ΔMQC 为等腰三角形且 ΔMQB 为直角三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2016年云南省昆明市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

抛物线 y = - 2 3 x 2 + 7 3 x - 1 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.

(1)点 A B D 的坐标分别为                       

(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E ΔABC 内(含边界)时,求 t 的取值范围;

(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,已知抛物线交 x 轴于 A B 两点,交 y 轴于 C 点, A 点坐标为 ( - 1 , 0 ) OC = 2 OB = 3 ,点 D 为抛物线的顶点.

(1)求抛物线的解析式;

(2) P 为坐标平面内一点,以 B C D P 为顶点的四边形是平行四边形,求 P 点坐标;

(3)若抛物线上有且仅有三个点 M 1 M 2 M 3 使得△ M 1 BC 、△ M 2 BC 、△ M 3 BC 的面积均为定值 S ,求出定值 S M 1 M 2 M 3 这三个点的坐标.

来源:2018年湖北省恩施州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴为直线 x = - 1 ,且抛物线经过 A ( 1 , 0 ) C ( 0 , 3 ) 两点,与 x 轴交于点 B

(1)若直线 y = mx + n 经过 B C 两点,求直线 BC 和抛物线的解析式;

(2)在抛物线的对称轴 x = - 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;

(3)设点 P 为抛物线的对称轴 x = - 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.

来源:2016年山东省枣庄市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,已知平行四边形 ABCD 顶点 A 的坐标为 ( 2 , 6 ) ,点 B y 轴上,且 AD / / BC / / x 轴,过 B C D 三点的抛物线 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( 2 , 2 ) ,点 F ( m , 6 ) 是线段 AD 上一动点,直线 OF BC 于点 E

(1)求抛物线的表达式;

(2)设四边形 ABEF 的面积为 S ,请求出 S m 的函数关系式,并写出自变量 m 的取值范围;

(3)如图2,过点 F FM x 轴,垂足为 M ,交直线 AC P ,过点 P PN y 轴,垂足为 N ,连接 MN ,直线 AC 分别交 x 轴, y 轴于点 H G ,试求线段 MN 的最小值,并直接写出此时 m 的值.

来源:2016年山东省烟台市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质计算题