首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 计算题
  • 难度 较难
  • 浏览 124

抛物线 y = - 2 3 x 2 + 7 3 x - 1 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.

(1)点 A B D 的坐标分别为                       

(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E ΔABC 内(含边界)时,求 t 的取值范围;

(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.

登录免费查看答案和解析

抛物线y23x273x1与x轴交于点A,B(点A在点B的左侧