抛物线 y = - 2 3 x 2 + 7 3 x - 1 与 x 轴交于点 A , B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.
(1)点 A , B , D 的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E 在 ΔABC 内(含边界)时,求 t 的取值范围;
(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.
定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知 A 、 B 是 ⊙ O 上两点,请在圆上找出满足条件的点 C ,使 ΔABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);
(2)如图2,在正方形 ABCD 中, E 是 BC 的中点, F 是 CD 上一点,且 CF = 1 4 CD ,试判断 ΔAEF 是否为“智慧三角形”,并说明理由;
运用:
(3)如图3,在平面直角坐标系 xOy 中, ⊙ O 的半径为1,点 Q 是直线 y = 3 上的一点,若在 ⊙ O 上存在一点 P ,使得 ΔOPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 P 的坐标.
某公司开发出一款新的节能产品,该产品的成本价为6元 / 件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元 / 件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线 ODE 表示日销售量 y (件)与销售时间 x (天)之间的函数关系,已知线段 DE 表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元.
(2)求 y 与 x 之间的函数关系式,并写出 x 的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 与边 BC 、 AC 分别交于 D 、 E 两点,过点 D 作 DF ⊥ AC ,垂足为点 F .
(1)求证: DF 是 ⊙ O 的切线;
(2)若 AE = 4 , cos A = 2 5 ,求 DF 的长.
小慧根据学习函数的经验,对函数 y = | x - 1 | 的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:
(1)函数 y = | x - 1 | 的自变量 x 的取值范围是 ;
(2)列表,找出 y 与 x 的几组对应值.
x
…
- 1
0
1
2
3
y
b
其中, b = ;
(3)在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质: .
咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:
(1)补全条形统计图,“体育”对应扇形的圆心角是 度;
(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 人;
(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.